Status of analysis of neutron data obtained with compact TOF neutron spectrometer

Nikita Lashmanov

Joint Institute for Nuclear Research, Dubna, Russia

BM@N meeting, 4 -5 March, 2025

Compact TOF Neutron Spectrometer

BM@N run Dec.2022 – Feb.2023

Neutron Detectors					
Detector	θ (deg.)	L (cm)	Stilbene (mm)		
ND1	110 °	20	D30×10		
ND2	121 °	30	D25.4×25.4		
ND3	110 °	30	D25.4×25.4		
ND4	95 °	30	D25.4×25.4		

BC2 – Start detector (T0)

-2.193

30 x [mm]

Scintillator: BC-400B, 34×34×0.15 mm³ PMT: XPM85112/A1 (Photonis), 2 units Time resolution: $\sigma_t = 40 \text{ ps}$

The compact TOF Neutron Spectrometer

A new design of the neutron spectrometer (prototype)

Selection of Interactions in the Target

Only events with one Xe ion in 3.6- μ s interval in BC1 were used in the neutron data analysis

The interaction trigger allows to collect data from central to peripheral collisions if the BD response is >3 fired strips

Neutron Detectors

Detection of scintillation photons with four SiPMs 6×6 mm², SensL, J ser.

Pulse shape n/γ - discrimination

Time and Energy resolution

Time resolution of Neutron Detectors is estimated by a half of maximum of gamma-peak and time resolution of the T0- detector

	ND1	ND2	ND3	ND4
σ_t (ps)	128	114	118	110

Energy resolution of the TOF measurements:

TOF spectra and background contribution

Energy spectra of neutrons

Data processing procedure

$d^2\sigma$	ΔN		
$\overline{dEd\Omega}$ =	$\overline{\Delta E \cdot \Delta \Omega \cdot \varepsilon(E) \cdot n \cdot I \cdot k_1 \cdot k_2}$		

- **E** kin. energy of neutron
- ΔN the number of events in the energy interval ΔE
- $\Delta \Omega \ \text{the solid angle}$
- $\epsilon(E)$ the detector efficiency at neutron energy E
- **n** the number of target nuclei per 1 cm²
- the number of beam ions
- \mathbf{k}_1 the correction factor for the dead time of the spectrometer
- k_2 the correction factor for the selection of events with one incident beam ion in a time interval of ± 1.5 µs

A comparison with predictions of other theoretical models is in progress

Energy range: 50 – 5000 MeV

Neutron Detectors

Detector	Stilbene	Angle
FND1	D31 × 31 mm	3°
FND2	D31 × 31 mm	6 ^o
FND3	D40 × 20 mm	9°
FND4	D40 × 20 mm	12°

Aim of the measurements

- ✓ Study neutron emission from beam spectators and comparison with theoretical models and results of the compact TOF spectrometer
- ✓ To get reference data for HGND project
- Study of energy and angular distribution of neutrons coming to nZDC

The event statistics required is obtained in one-day measurement (with and without target)

Outlook

- We continue analysis of neutron production cross sections
- To get results with selection events for three centrality intervals > 60%, 60-40%, 40-20%, 20-0% using information from other BM@N detectors
- In final analysis the statistics will be increased by factor of ~2.4 by using another protection condition: BC1 pulse with B/A-protection ±240 ns and interactions (BC1 * FD_{veto}) with the B/A protection interval of ±1.8 µs.
- Creating the geometry of forward neutron detectors for background assessment using Geant4
- Laboratory testing of forward neutron detectors with TQDC readout