

BM@

Analysis and Detector Meeting of the BM@N Experiment at NICA

Production of Λ hyperons in 4.0 and 4.5 AGeV carbon-nucleus interactions at the Nuclotron

Speaker: Ksenia Alishina Scientific adviser: Yu. Stepanenko Scientific supervisor: M. Zavertyaev

05.03.2025

JOINT INSTITUTE FOR NUCLEAR RESEARCH

VB LHEP, JINR, Dubna

Setup scheme

To measure momenta of a charged particle;

Event reconstruction in GEM in C+A interaction;

Acceptance evaluation procedure (DCM - QGSM)

Kinematic measuring range (4, 4.5 AGeV):

 $0.1 < p_T < 1.05 \text{ GeV/c}$].2 < $y_{lab} < 2.1$

2 To get the number of events generated by the MC.

In each cells the invariant mass distribution fit with

3

$$f_{bg} = \mathbf{N} \cdot (\boldsymbol{m} - \boldsymbol{M}_0)^A \cdot \boldsymbol{e}^{-\mathbf{B} \cdot (\boldsymbol{m} - \boldsymbol{M}_0)}$$

N, A, B are free parameters, $M_0 = 1.078 \ \Gamma \flat B/c^2 \ \text{is the threshold limit, } m \ \text{is the mass value.}$

55.79 / 80 Constant 25.1 ± 1.1 45 F 1808 ± 4.7 Mean 40 F Sigma 139.3 ± 4.0 35 30 F 25 F 20 F 15 F 1700 1800 1900

1.33< ylab < 1.45, 0.2< pT< 0.3

Evaluation of the precision of the acceptance

Pseudo-experiment

Gaussing smearing. The **"new"** histogram was fit an the new signal was evaluated. **1000** times

Procedure was repeated.

Red Line – Fit function $Gauss(< N^{\Lambda}_{rec_{MC}} >, \sigma_{N^{\Lambda}_{rec_{MC}}})$

Each event is weighted with $\varepsilon_i = \langle N_{rec_{MC}}^{\Lambda} \rangle_i / N_{gen_i}^{\Lambda}$ is evaluated number of Λ , $N_{gen_i}^{\Lambda}$ is the number of Λ generated; $\Delta \varepsilon_i = \sigma_{N_{rec_{MC}}^{\Lambda}} / N_{gen_i}^{\Lambda}$ is evaluated error.

Spectrometer acceptance $(\epsilon_i \pm \Delta \epsilon_i)$ for Λ in (y, p_T) cells

C+C, E_{kin} = 4 AGeV

Mass distribution of the Λ (BM@N DATA)

0.1 < p_T <1.05 and 1.2 < y_{lab} < 2.1

Procedure in DATA C+A \rightarrow X

 Split (y, pT) area in small cells for MC/DATA (8x8);

- 2) To each event assigned the weight ε_i ;
- 3) Sum the cells by $\sum_{ij} y_{ij}$ and by $\sum_{ij} pT_{ij}$
- o Λ signal width ~ 2.0 4 MeV;
- Signal = hist Background in 1075 1150 MeV/c²;

Uncertainties from signal variation (BM@N DATA)

Red Line – Fit function Gauss ($< N_{rec_{DATA}}^{\Lambda} >, \sigma_{N_{rec_{DATA}}}^{\Lambda}$

0.1 < p_T <1.05 and 1.2 < y_{lab} < 2.1

 $\Delta \sigma_{\Lambda} = \sigma_{N_{rec\,DATA}^{\Lambda}} / (\varepsilon_{trig} \times \varepsilon_{pileup} \times L)$

 $\Delta Y_{\text{stat}\Lambda} = \Delta \sigma_{\Lambda} / \sigma_{inel}$

Cross sections $\sigma_A(y/p_T)$ of the Λ and yields (BM@N)

The inclusive cross section σ_{Λ} and Y_{Λ} of Λ hyperon in C+A interactions are calculated in bins of (y, p_{T}) according to the formula:

weighted signal

$$\begin{aligned} \sigma_{\Lambda}(p_{T}) &= [\sum_{y} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})] / [\varepsilon_{triv} \cdot \varepsilon_{pileup} \cdot L] \\ \sigma_{\Lambda}(y) &= [\sum_{p_{T}} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})] / [\varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L] \\ Y_{\Lambda}(y - p_{T}) &= \sigma_{\Lambda}(y - p_{T}) / \sigma_{inel} \end{aligned}$$

L is the luminosity, N_{rec}^{Λ} is the number of recontacted Λ -hyperons, ε_{rec} is the combined efficiency of the Λ - hyperon reconstruction,

 \mathcal{E}_{trig} is the trigger efficiency, \mathcal{E}_{pileup} is the suppression factors of reconstructed events.

 σ_{inel} is the cross section for minimum bias inelastic C+A interactions(DCM-QGSM model).

Yield RESULTS (Preliminary)

Target	Energy, AGeV	$Y_{\Lambda} \pm \Delta Y_{\text{stat}\Lambda} \pm \Delta Y_{\Lambda_{sys}}$	Energy, AGeV	$Y_{\Lambda} \pm \Delta Y_{\text{stat}\Lambda} \pm \Delta Y_{\Lambda_{sys}}$
		0.1 < p _T < 1.05 and 1.2 <	y _{lab} < 2.1	
C + C		0.011 ± 0.001 ± 0.004		0.013 ± 0.002 ± 0.005
C + Al	4.0	0.032 ± 0.004 ± 0.006	ζ.Ε	0.025 ± 0.003 ± 0.005
C + Cu	4.0	0.030 ± 0.003 ± 0.005	4.5	0.037 ± 0.004 ± 0.006
C + Pb		-		0.033 ± 0.010 ± 0.010

Systematic evaluation: Cut variation

An approach in the estimation of systematic uncertainties related to the variation of selection criteria for events with Λ -hyperons.

The selection criteria based only on two parameters **path**, dca.

Nominal values:

Calculation of systematic uncertainties yields of the Λ

$$1 \qquad \Delta Y_{\Lambda_{sys_pseudo_exp}}^2 = Y_{\Lambda}^2 (\sigma_{N_{rec}DATA}^2 / < N_{rec_{DATA}}^\Lambda >^2 + \sigma_{N_{rec}MC}^2 / < N_{rec_{MC}}^\Lambda >^2);$$

2
$$\Delta Y_{\Lambda_{sys_{cut}var}} = 0.004 - from the variation of the Λ -hyperon selection criteria;$$

3
$$\Delta Y_{\Lambda_{sys}} = \sqrt{\Delta Y_{\Lambda_{sys}_pseudo_exp}}^2 + \Delta Y_{\Lambda_{sys}_cut_var}^2} - \text{total systematic uncertainty;}$$

Rapidity (y) spectra of Λ hyperons vs models predictions (Preliminary)

Rapidity (y) spectra of Λ hyperons vs models predictions(Preliminary)

p_T spectra of Λ hyperons vs models predictions(Preliminary)

p_T spectra of Λ hyperons vs models predictions(Preliminary)

Invariant p_T spectra of Λ hyperons vs models predictions (Preliminary)

The measured spectra of the Λ yields in $p_{\rm T}$ are parameterized by the formula:

$$\frac{1}{p_T} \frac{d^2 N}{dp_T} \frac{dy}{dy} = N \cdot \exp(-\frac{(m_T - m_A)}{T_0})$$

The transverse mass $m_T = \sqrt{m_A^2 + p_T^2}$,

The N normalization,

The inverse slope parameter T_0 are free parameters of the fit;

Invariant p_T spectra of Λ hyperons vs models predictions (Preliminary)

SLOPE RESULTS (Preliminary)

	T _o , MeV,	T ₀ , MeV,	T _o MeV,	T ₀ MeV,
4.0 AUEV	C+C	C+AI	C+Cu	C+Pb
PM@N	92 ±9± 17	99 ± 10 ±16	108 ± 11 ± 14	Low
	1.83	0.57	0.1	statistic
DCM - QGSM	128 ± 4	119± 3	138 ± 4	136± 4
UrQMD	114 ± 7	128 ± 7	137± 6	135± 8
PHSD	89 ± 3	105 ± 3	111 ± 7	102 ± 4

	T ₀ , MeV,	T _o , MeV,	T _o , MeV,	T ₀ , MeV,
4.5 AGev	C+C	C+AI	C+Cu	C+Pb
BM@N	101 ± 15 ± 17	86 ± 8 ±17	91 ± 8 ±15	99 ± 17 ± 20
	1.00	0.77	0.19	0.78
DCM - QGSM	140 ± 4	141 ± 4	142 ± 6	150 ± 5
UrQMD	125 ± 4	132 ± 7	138 ± 8	143 ± 6
PHSD	109 ± 5	113 ± 5	115 ± 5	113 ± 5

Extrapolation in full kinematic range

Energy dependence of Λ yields measured in C+C interactions

Energy dependence of Λ yields measured in C+Al, C+Cu, C+Pb interactions

Ratios of the *A* hyperon yields to the number of nucleonsparticipants measured in BM@N carbon-nucleus interactions at 4.0 AGeV (left) and 4.5 AGeV (right)

The predictions of the **DCM-QGSM**, **UrQMD** and **PHSD** models

Summary

Cross sections(σ_A), yields (Y_A), slope T_o were measured and compare prediction model

were obtained (BM@N)

Summary

In the energy range 4 - 4.5 AGeV this difference is not significant and the temperature values are close within the error.

BACK UP

Event selection criteria

- Number of tracks in selected events: positive>=1, negative>=1
- 2 Number of signals in the start detector: T₀=1
- 3 Number of signals in the beam counter: BC₂=1
- 4 Number of signals in the veto counter around the beam: Veto=0
- 5 Trigger condition in the barrel detector: number of signals BD>=2 or BD>=3 (run dependent)

Trigger efficiency

The trigger efficiency was evaluated by a convolution of the GEANT simulation of the trigger BD detector response to DCM-QGSM events with reconstructed Λ hyperons and the GEANT simulation of delta electrons.

$$\varepsilon_{trig} = N_{sim_{\Lambda}}(BD \ge n)/N_{sim_{all}}$$

- 1) Contribution of delta electrons;
- 2) The spread of the trigger efficiencies calculated for different y and p_T bins of the reconstructed Λ -hyperons;
- 3) Change in the trigger efficiency after correction of the simulated track multiplicity in agreement with the experimental data.

Table 1. Trigger efficiency **E**trig

4 AGeV	С	Al	Cu	Pb
$\varepsilon_{trig}(BD{\geq}2)$	0.80±0.02	-	-	-
$\varepsilon_{trig}(BD{\geq}3)$	-	0.87±0.02	0.92±0.02	0.95±0.02
4.5 AGeV	С	Al	Cu	Pb
4.5 AGeV ε _{trig} (BD≥2)	C 0.80±0.02	Al -	Cu	Pb -
4.5 AGeV $\varepsilon_{trig}(\text{BD} \ge 2)$ $\varepsilon_{trig}(\text{BD} \ge 3)$	C 0.80±0.02 -	Al - 0.83±0.02	Cu - 0.91±0.02	Pb - 0.94±0.0 2

 ϵ_{trig} is used for evaluation of production cross section;

GEM efficiencies comparison Data/MC (4.0GeV <u>C+C</u>) after applying effs to MC

For each GEM station they were estimated using the following approach:

- 1. Select good quality tracks with the number of hits per track (excluding the station under study) not less than N;
- 2. Check that track crosses the detector area, if yes, add one track to the denominator;
- 3. If there is a hit in the detector, which belongs to the track, add one track to the numerator;
- 4. GEM efficiency = sum of tracks in numerator / sum of tracks in denominator.

1D GEM efficiency comparison between the experimental data and MC (4.0GeV C+C)

X, Y, Z distributions of the experimental primary vertex

Data and Monte - Carlo comparison

C+Cu interactions at **4.0 AGeV** carbon beam energy: transverse momentum of positive particles (left); transverse momentum of negative particles (center); total momentum of negative (p/q<0) and positive particles (p/q>0) (right). **Blue line** - MC, **red line** - data.

The suppression factors

The suppression factors of reconstructed events ϵ_{pileup} due to selection criteria

- 2 applied to eliminate beam halo and pile-up events in interactions of the 4.0
- and 4.5 AGeV carbon beam with the C, Al, Cu, Pb targets.

Table 2. Epileup suppression factors

Selection	4 AGeV	4.5 AGeV
T0==1	+	+
BC2==1	+	+
Veto==0	+	+
С	0.674±0.034	0.529 <mark>±</mark> 0.026
Al	0.740±0.037	0.618±0.031
Cu	0.779±0.039	0.621±0.031
Pb	0.784±0.039	0.686±0.034

Number of signals in the start detector: $T_0=1$

Preliminary systematics evaluation:

$$\delta \varepsilon_{pileup_{SYS}} = \varepsilon_{pileup} \cdot \delta \varepsilon_{pileup};$$

where
$$\delta \epsilon_{pileup} = 5\%$$

 ε_{pileup} is used for evaluation of production cross section;

Cross sections $\sigma_A(y/p_T)$ of the Λ

The inclusive cross section σ_{Λ} and \mathbf{Y}_{Λ} of Λ hyperon in C+A interactions are calculated in bins of $(y - p_T)$ according to the formula: weighted signal

 $\begin{aligned} \sigma_{\Lambda}(p_{T}) &= \left[\sum_{y} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})\right] / \left[\varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L\right] \\ \sigma_{\Lambda}(y) &= \left[\sum_{p_{T}} N_{rec}^{\Lambda}(y, p_{T}) / \varepsilon_{rec}(y, p_{T})\right] / \left[\varepsilon_{trig} \cdot \varepsilon_{pileup} \cdot L\right] \end{aligned}$

L is the luminosity, N_{rec}^{Λ} is the number of recontacted Λ -hyperons, \mathcal{E}_{rec} is the combined efficiency of the Λ - hyperon reconstruction, \mathcal{E}_{trig} is the trigger efficiency, \mathcal{E}_{pileup} is the suppression factors of reconstructed events.

Table 3. Integrated **luminosities** collected in interactions of the carbon beam of 4.0 and 4.5AGeV with different targets.

Interactions	Integrated luminosity/			Integrated
target thickness				luminosity/
target tillckness		10 ³⁰ cm ⁻²		10 ³⁰ cm ⁻²
C+C (9 mm)	4 AGeV	6.06	4.5 AGeV	4.69
C+Al (12 mm)	-	2.39		3.60
C+Cu (5 mm)		2.00		3.06
C+Pb (10 mm)		0.22		0.84

Yields of the Λ

The Y_{Λ} of Λ hyperon in C+A interactions are calculated in bins of $(y - p_T)$ cells according to the formula:

$$Y_{\Lambda}(y-p_{T}) = \sigma_{\Lambda}(y-p_{T})/\sigma_{inel}$$

 σ_{inel} is the cross section for minimum bias inelastic C+A interactions(model).

The cross sections for inelastic C+Al, C+Cu, C+Pb interactions calculated by the formula (DCM-QGSM): $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3})^2$

 $R_0 = 1.2$ fm is an effective nucleon radius, A_P and A_T are atomic numbers of the beam and target nucleus [1]. The **uncertainties** for C+Al, C+Cu, C+Pb inelastic cross sections are estimated by formula: $\sigma_{inel} = \pi R_0^2 (A_P^{1/3} + A_T^{1/3} - b)^2$ with $R_0 = 1.46$ fm and b = 1.21 [2].

Interaction	C+C	C+Al	C+Cu	C+Pb
Inelastic cross section, mb	830±50	1260±50	1790±50	3075±50

Table 4. Inelastic cross sections σ_{inel} for carbon-nucleus interactions

[1] Kalliopi Kanaki "Study of A hyperon production in C+C collisions at 2 AGeV beam energy with the HADES spectrometer".[2] H.Angelov et al., P1-80-473, JINR, Dubna.

Invariant p_T spectra of Λ hyperons vs models predictions(Preliminary)

The measured spectra of the Λ yields in p_{T} are parameterized by the formula:

$$\frac{1}{p_T} \frac{d^2 N}{dp_T} \frac{dy}{dy} = N \cdot \exp(-(m_T - m_A)/T_0)$$

The transverse mass $m_T = \sqrt{m_A^2 + p_T^2}$,

The N normalization,

The inverse slope parameter T_0 are free parameters of the fit;

