Quality Assurance and Centrality determination in Xe+Cs(I) based on multiplicity

Demanov Alexander (MEPhi) Peter Parfenov (JINR) Arkady Taranenko (JINR, MEPhI)

This work is supported by: the Fundamental and applied research at the NICA megascience experimental complex" №FSWU-2024-0024

BM@N Analysis Meeting, 05/03/2025

Outline

- 1. QA Run-by-Run
- 2. Comparison of old and new production
- 3. Centrality determination
- 4. Multiplicity correction

QA Run-by-Run: runs rejection

- Physical runs
- CCT2
- More than 1 track in vertex reconstruction

Procedure:

- Averaged (or fit parameters) observables are calculated for each run
- the mean (μ) and standard deviation (σ) are calculated as a function of RunId

$$\mu=rac{1}{N}\sum\limits_{i=1}^N y_i \qquad \sigma=\sqrt{rac{\sum(y_i-\mu)^2}{N}}~$$
 , where i - RunId number and N - total numbers of runs

• beyond $\pm 3\sigma$ away from global means - bad runs

Event selection

- Xe+Cs 3.8 GeV
- Production= last
- Physical runs
- Triggers: CCT2
- Remove BadRuns
- Corrected on <VtxX>, <VtxX>, <VtxZ> for each RunId
- Event selection:
 - More than 1 track in vertex reconstruction
 - $VtxR < 1.0 \text{ cm} (sqrt(VtxY_{corr}^2 + VtxX_{corr}^2) < 1 \text{ cm})$
 - \circ VtxZ < 0.1 cm
 - Apply graphics cuts
 - Remove pileup (from Oleg Golosov)

Difference between prod: beam tracker

Difference between prod: TOF-700 (run 8005)

Difference between prod: TOF-700 (run 8005)

tof-700: β -> BmnGlobalTrack.fBeta700

tof-701: β -> BmnGlobalTrack.fBeta701

Exclude module 30:

- BmnGlobalTrack.fBeta701 + BmnTof701Hit
- mod = ((hit->GetDetectorID() & 0x0000FF00) >> 8) - 1

Motivation for centrality determination

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Impact parameters (b) one of the important collision parameters
 - impossible to measure experimentally
- **Goal of centrality determination:** map (on average) the collision geometry parameters to experimental observables (centrality estimators)

Centrality determination

HADES, Au+Au 1.23A GeV

Eur. Phys. J. A (2018) 54: 85

Centrality	b_{\min}	$b_{\rm max}$	$\langle b \rangle$
Classes			
0-5%	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 - 15 %	4.70	5.70	5.22
15 - 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 - 35 %	8.10	8.70	8.40
35 - 40 %	8.70	9.30	9.00
40 - 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 - 60 %	10.90	11.40	11.15

STAR, Au+Au, BES

	10 ⁻³ (a) 7.7 GeV		(b) 11.5 GeV	(c) 19.6 GeV	Phys. Rev. C 86, 054908 (2012)					
("	10 ⁻⁴ 10 ⁻⁵				1			Centrality (%) $\langle N_{\rm part} \rangle$	$\langle N_{\rm coll} \rangle$
(1/N)(dN /dN ^{raw}	10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷ 10 ⁻⁸	(d) 27 GeV	400	(e) 39 GeV		-Data-Gla 40-80% 10-40% 0-10%	uber MC	$\begin{array}{c} 0-5\%\\ 5-10\%\\ 10-20\%\\ 20-30\%\\ 30-40\%\\ 40-50\%\\ 50-60\%\\ 60-70\%\\ 70-80\%\\ \end{array}$	$\begin{array}{l} 337 \pm 2 \\ 290 \pm 6 \\ 226 \pm 8 \\ 160 \pm 10 \\ 110 \pm 11 \\ 72 \pm 10 \\ 45 \pm 9 \\ 26 \pm 7 \\ 14 \pm 4 \end{array}$	$774 \pm 28 \\ 629 \pm 20 \\ 450 \pm 22 \\ 283 \pm 24 \\ 171 \pm 23 \\ 96 \pm 19 \\ 52 \pm 13 \\ 25 \pm 9 \\ 12 \pm 5$
	, c	200	-00	N ^r	aw c	, 200	-00			

Centrality determination based on multiplicity provides with:

impact parameter (b)

350 400

Npart

number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc.

The BM@N experiment

SImulation:

- DCM-QGSM-SMM, Xe-Cs
- GEANT4 transport

<u>Data</u>:

- run8 Xe-CsI @3.8A GeV
- Event selection :
 - Physical runs
 - Centrality trigger (CCT2)
 - More than 1 track in vertex reconstruction
 - \circ Vtx_R < 1.0 cm
 - \circ Vtx_z < 0.1 cm

Multiplicity of charged particles from tracking system FSD+GEM

Centrality determination based on Monte-Carlo sampling of produced particles

Centrality determination: pileup rejection

*Def cuts:

Rhys runs

• CCT2

vtxNtracks > 1

• V_R <1 cm

 $|\dot{V}_{7}| < 0.1 \text{ cm}$

Remove BabRuns

*Pileup cuts from Oleg Golosov

- The "pileup" cut was applied with run-by-run corrections
- pileup cuts removes ~25% events
- We use the new multiplicity in our centrality procedure

Centrality determination after remove "pileup"

Change fit result

- f: 0.5 -> 0.4
- k: 0.25 -> 0.28
- µ: 0.44 -> 0.42
- pileup: 5.5% -> 0.3%

After pileup rejection the "pileup" events contribution is less 1%

Multiplicity & RunID: Effect of voltage

N tracks

Multiplicity & RunID: Effect of temperature

Mult vs Runld: Shift and re-weight (zero bins eval)

RunId_{ref}: 8120-8170

Extract the high-end point of refMult distribution in each RunId via fitting the refMult tail by the function:

 $f(refMult) = A^*Erf(-\sigma^*(refMult-h)) + A$

refMult can then be corrected by:

refMultCorr = refMult * h_{ref} / h(RunId)

Centrality determination after refMult correction (7310-7500)

Example, multiplicity [49;71):

- corresponding 30-40% for Run 8150-8170
- corresponding 20-30% for Run 7310-7500

We suggest using the "shift" correction

Off-target collisions contribution

With target — with all selection criteria used in analysis

- Without target empty target runs + selection criteria
- Normalized to number of events, then scaled

18

Result of centrality determination at Xe-CsI @ 3.8 AGeV

- Good agreement between model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

Summary and outlook

- The main difference between productions is TOF-700
- The MC-Glauber method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- Corrections for vertex and RunId was proposed
- Centrality determination using data from JAM and DCM-QGSM-SMM model (in progress)

Thank you for your attention!

Centrality determination: pileup rejection

During the run8 the luminosity changes -> different pile-up contribution:

- Fit predicts **6%** pileup events for Run 7400-7450
- Fit predicts 2% pileup events for Run 7620-7640

Centrality based on MC-Glauber at low energies

Square mass (old prod)

QA Run-by-Run: proton

QA Run-by-Run: SiBT (old)

QA Run-by-Run: SiBT (old)

Difference between prod: Global Track Parameters

N hits

Vtx Z

Vertex position

Multiplicity corrections

For Run8:

- 1. Shift for Runld
- 2. Re-weight Runld
- 3. Shift VtxZ (no need)
- 4. Re-weight VtxZ

32

Mult vs Runld

Strong dependence on Run Id

Mult vs Runld: Shift(1)

N tracks

QA Run-by-Run: runs rejection

Procedure: y_i — mean value by run ID

More than 1 track in vertex reconstruction

36

QA Run-by-Run: GEM+FSD (February prod.)

We don't consider Runs below 6924

QA Run-by-Run: TOF-400 and TOF-700 (February prod.)

• We don't consider Runs below 6924

QA Run-by-Run: vertex position

Bad Runs: 7417, 8115, 8121, 8201, 8215

QA Run-by-Run: vertex quality

Bad Runs: 8033, 8204, 8205, 8209, 8210, 8211, 8212, 8213

QA Run-by-Run: BC1, FD

Plans on future: calibrate factor for each Runld

QA Run-by-Run: FHCal and FQH

Bad Runs: 7313, 7657, 7659, 7679, 7681, 7907, 8289

QA Run-by-Run: Tracks

Bad Runs: 7843, 7932, 7933, 7935, 7937, 7954, 7955, 8247

Significant run Id dependence

QA Run-by-Run: Tracks

<p_>GeV/c

<**η**>

Bad Runs: 6980, 6992, 7417, 7520

Significant run Id dependence

<φ>

QA Run-by-Run: Tracks

45

Square mass (old prod)

February prod.

May prod. (last)

TOF-700

TOF-400

Calibration of TOF-400 and TOF-700 is completed.

QA Run-by-Run: proton

QA Run-by-Run: π^{*}

Runs 6900-7200 are in progress...

QA Run-by-Run: π⁻

Runs 6900-7200 are in progress...

Bad Runs

Runld: 7313, 7415, 7417, 7435, 7469, 7517, 7519, 7520, 7537, 7575, 7604, 7630, 7657, 7659, 7679, 7681, 7705, 7735, 7843, 7847, 7848, 7850, 7851, 7852, 7853, 7855, 7856, 7857, 7858, 7859, 7865, 7868, 7907, 7931, 7932, 7933, 7935, 7937, 7938, 7939, 7954, 7955, 8031, 8032, 8033, 8115, 8121, 8167, 8201, 8204, 8205, 8208, 8209, 8210, 8211, 8212, 8213, 8215, 8247, 8265, 8266, 8267, 8281, 8289

Pileup

Pileup:

- 1. Select events with CCT2
- 2. Select events with "one interaction" (next slide):
 - a. Fit of each run ID with Gaus (bc1s,fd)
 - b. Scale
 - c. Select events with "one interaction"
- 3. Graphic cut:
 - a. Fill StsDigits vs nTracks
 - b. Fit of each nTracks bin with Gaus
 - c. fun(nTracks,StsDigit)

BC1 and FD Integral cut improvement

Only CCT2 Fit of each run ID with Gaus (first peak)

fd Integral

Square mass

BC1 Integral cut improvement

See the talk of I.Segal for details

- CCT2 trigger
- More than 1 track for vertex reconstruction

We have more events after the New cuts

Additional pileup graphic cut

• Graphic cut was performed to throw out all event unusual behaviour:

 $STS_{max}(N_{tracks}) = 4.56033e - 05^{*}N^{3} - 0.0518774^{*}N^{2} + 19.4203^{*}N + 188.248$ $STS_{min}(N_{tracks}) = -9.62078e - 05^{*}N^{3} + 0.0332792^{*}N^{2} + 4.81632^{*}N - 74.0087$

• Difference: