

Evaluating the triggers efficiency in an Xenon run

<u>V.Plotnikov</u> VBLHEP, JINR, Dubna, Russia

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER Analysis meeting 4-5.03.2025, Dubna, Russia

Outline

- 1. Trigger system
- 2. BD efficiency
- 3. FD efficiency
- 4. Pile up suppression using BC2
- 5. Dependence of trigger system parameters on run id
- 6. Efficiency of BD and FD and its systematics
- 7. Using FHCal as a trigger instead of FD
- 8. Plans

Trigger system

BD efficiency

Base procedure

- Denominator: events with MBT flag (after reduction) && FD signals in TW
- Numerator : as denominator && BD signals in TW (NBD≥4)
 - ε_{вD}: numerator divided by denominator

FD parameters Trigger window Signal amplitude

BD efficiency

- Runs with **Mixed Trigger** Correction for events with NBD<4
- 1 Xe ion by **BC1** in 3 µs

FD efficiency

Base procedure

- Denominator: events with CCT1 flag (after reduction) && BD signals in TW
- Numerator: as denominator &&
 FD signals in TW
 (Amp_{FD}<4250)
- ϵ_{FD} : numerator divided by denominator

✓ Runs with Mixed Trigger
 ✓ 1 Xe ion by BC1 in 3 µs
 (suppresses the number of events by ~4 times)

Pile up suppression using BC2

- Long and deep negative tail after the signal in BC2
 - Only positive amplitudes are included in the integral
 - The integral is calculated in a window of ±150 ns relative to the middle of trigger window (TW)
 The peak with 1 Xe ion is clearly distinguished by the integral

Pile up suppression using BC2

✓ Different BC2 trigger windows
 ✓ Part of events after nBC2Xe==1 cut
 ✓ Total FD efficiency
 ✓ The window TW±40 ns is chosen as optimal

Dependence of trigger system parameters on run id

V.Plotnikov

9

10⁵

10⁴

BC2 time by TQDC
 BC2 time is stable during Xe run
 BC2 integral changed

BD and FD efficiency by runs

BD efficiency is quite stable during Xe run
 FD efficiency varies significantly

V.Plotnikov

BD and FD efficiency systematics

✓ The statistical uncertainty in each NTrPV bin does not exceed 5%
 ✓ 4 run ranges for systematics of **BD**, 5 run ranges – for **FD** ✓ When calculating the ε_{BD}, the BC2 cat rejects 0.5% of events, for ε_{FD} – 8%

Combined efficiency of BD and FD

- Efficiency reaches a plateau (90-95%) above 15 NTrPV and below
 9 fm according to b
- Peripheral events are recorded with less efficiency (down to 20%)

FHCal efficiency

Small modules and central modules

- 0000 Counts 0000 Counts Run 8281 (BT), module 18, NiT events h 18699 Entries 0.8321 Mean Std Dev 1.011 5000 4000 3000 2000 1000 2 3 5 4 E_{FHCal} [MeV]
 - Typical energy distribution in one of the FHCal modules in noninteraction events
 - ✓ By modules, the maximum varies from 0.4 to 0.8 MeV

FHCal efficiency

✓ FHCal efficiency is not dependent on pile up

V.Plotnikov

- 1. Add to BmnRoot class to get information about BD and FD efficiency in Xe run
- 2. This class will give the trigger efficiency, as well as the statistical and systematic uncertainty, by run id and NtrPV
- 3. It will also allow you to check whether the event meets the analysis conditions or not
- 4. Further, perhaps this class will provide efficiency for other selection criteria for pile up (for example, without the condition on BC2)

Thank you for attention!

V.Plotnikov

Pile up suppression using BC1

NBD<4 correction procedure

Base procedure

- Denominator (h1): events with MBT flag (AR) && FD signals in TW
- Numerator (h2): as denominator&& BD signals in TW
- Numerator divided by denominator

Correction for h2

- h3: events with CCT2 flag
 (AR) && NBD<4 (signals in TW)
 - h4: events with MBT flag (AR) && (NBD==4 || NBD==5)
- ✓ h5: events with CCT2 flag (AR) && (NBD==4 || NBD==5)
- ✓ h3 → Scale(NEvents(h4)/ NEvents(h5))
- ✓ $h2 \rightarrow Add(h3)$

BD efficiency and systematics

✓ The central value is explored in more detail (in 13 run ranges)

✓ The statistical uncertainty in each NTrPV bin does not exceed 5%

V.Plotnikov

FD efficiency and systematics

✓ The central value is explored in more detail (in 62 run ranges)

✓ The statistical uncertainty in each NTrPV bin does not exceed 5%

V.Plotnikov