Photon conversion identification with machine learning approach

Pavel Gordeev

Motivation

• Particle identification is important in almost any high-energy physics analysis, but in some measurements such identification becomes crucial

• Such analyses are the measurement of direct photon spectra and correlations, where the signal is comparable with possible contamination

● In this presentation, we will discuss improvements in particle identification in MPD detector that can be achieved by applying machine learning approach for particle identification in MPD tracking system

Boosted Decision Trees (BDT)

- BDT are widely used in HEP
- The training starts with the **root node**, where an initial splitting criterion for the full training sample is determined
- At each node, the split is determined by finding the variable and corresponding cut value **that provides the best separation** between signal and background
- The leaf nodes are classified as signal or background according to the class the majority of events belongs to

Training sample

Variables for training

- **N_clu** number of TPC clusters
- x^2 obtained from Kalman filter
- **n** 1-2 difference of pseudorapidity of tracks
- **DCA** Distance of Closest Approach to PV for tracks
- **DCA daug** DCA between positively and negatively charged tracks
- **CPA** Cosine of Pointing Angle
- **R** conversion radius, distance from PV to SV
- **n_dE/dx** PID of tracks based on specific loss in TPC, number of σ from electron/positron line
- **M_inv** invariant mass of track pair
- **•** Armenteros-Podolanski variables **q** T and α
- **|cosѰ|** cosine of angle between pair plane and magnetic field (for Dalitz decays reduction)

UrQMD, Bi-Bi, √s_NN=9.2 GeV Event selection

- |V_z|<100 cm
- 0%<centrality<90% Preselections while tree writing:
- M_inv<2 GeV/c^2
- q_T<1 GeV/c
- x^2 $2 < 30$
- DCA_daug<10 cm
- DCA 1<30 cm
- DCA 2<30 cm
- p_T,1<15 GeV/c
- p_T ,2<15 GeV/c 4

Correlation Matrix (signal)

8

Training result

- For training: S=15'000 and B=15'000
- For testing: S=15'000 and B=38'000'000
- \bullet In the data sample we have \sim 2500 background to 1 real conversion photon
- The results of the training are: weight file, BDT response plot and optimal selection, variable ranking

Cut based method and BDT comparison

● Cut efficiencies and purities were calculated for Cut based method (with default values) and BDT method

Cut based method and BDT comparison

• Reconstruction efficiencies were also calculated for y and pi0

p_T - differential training

- Reconstruction efficiency for photons rapidly decreases from $pT = 0.7$ GeV/c
- p_T differential training should solve this issue
- Selected p T intervals for training:
- $0.0 0.3$
- $0.3 0.6$
- $0.6 0.9$
- $0.9 1.2$
- $1.2 1.5$
- 1.5-2.0

12

Cut based method and BDT comparison

● Efficiency and purity have steps-like structure (need to be fixed)

Cut based method and BDT comparison

• Reconstruction efficiency increased for high p_T with differential training

Conclusion

- Performance of BDT method is better than Cut based method, however default selections were not fully optimized
- p_T differential approach shows better reconstruction efficiency for higher p_T, but steps-like structure should be fixed
- BDT also have parameters that can be optimized (N_trees, etc.)

Correlation Matrix (background)

Testing efficiency compared to training efficiency (overtraining check)

p_T - diff

0.00-0.30

0.30-0.60

0.60-0.90

0.90-1.20

1.20-1.50

1.50-2.00

>2.00

