Photon conversion identification with machine learning approach

Pavel Gordeev

Motivation

• Particle identification is important in almost any high-energy physics analysis, but in some measurements such identification becomes crucial

• Such analyses are the measurement of direct photon spectra and correlations, where the signal is comparable with possible contamination

• In this presentation, we will discuss improvements in particle identification in MPD detector that can be achieved by applying machine learning approach for particle identification in MPD tracking system

Boosted Decision Trees (BDT)

- BDT are widely used in HEP
- The training starts with the **root node**, where an initial splitting criterion for the full training sample is determined
- At each node, the split is determined by finding the variable and corresponding cut value that provides the best separation between signal and background
- The leaf nodes are classified as signal or background according to the class the majority of events belongs to

Training sample

Variables for training

- **N_clu** number of TPC clusters
- χ⁻2 obtained from Kalman filter
- η_1-2 difference of pseudorapidity of tracks
- DCA Distance of Closest Approach to PV for tracks
- **DCA_daug** DCA between positively and negatively charged tracks
- CPA Cosine of Pointing Angle
- R conversion radius, distance from PV to SV
- **n_dE/dx** PID of tracks based on specific loss in TPC, number of σ from electron/positron line
- M_inv invariant mass of track pair
- Armenteros-Podolanski variables q_T and α
- [cosΨ] cosine of angle between pair plane and magnetic field (for Dalitz decays reduction)

UrQMD, Bi-Bi, √s_NN=9.2 GeV Event selection

- |V_z|<100 cm
- 0%<centrality<90% Preselections while tree writing:
- M_inv<2 GeV/c^2
- q_T<1 GeV/c
- χ^2<30
- DCA_daug<10 cm
- DCA_1<30 cm
- DCA_2<30 cm
- p_T,1<15 GeV/c
- p_T,2<15 GeV/c

Correlation Matrix (signal)

8

Training result

- For training: S=15'000 and B=15'000
- For testing: S=15'000 and B=38'000'000
- In the data sample we have ~2500 background to 1 real conversion photon
- The results of the training are: weight file, BDT response plot and optimal selection, variable ranking

Ranki	.ng	g result (1	top	p variable is best ranked)
Rank	:	Variable	:	Variable Importance
	-			
1	:	mass	:	1.348e-01
2	:	qt	:	9.360e-02
3	:	сра	:	8.976e-02
4	:	dEdx2	:	8.416e-02
5	:	dEdx1	:	7.222e-02
6	:	R	:	7.028e-02
7	:	etadiff	:	6.443e-02
8	:	abscospsi	:	6.072e-02
9	:	dca1	:	5.382e-02
10	:	dDCA	:	5.217e-02
11	:	dca2	:	4.924e-02
12	:	ncl2	:	4.918e-02
13	:	chi2	:	4.666e-02
14	:	alpha	:	4.489e-02
15		ncl1		3 4030-02

Cut based method and BDT comparison

• Cut efficiencies and purities were calculated for Cut based method (with default values) and BDT method

Cut based method and BDT comparison

• Reconstruction efficiencies were also calculated for y and pi0

p_T - differential training

- Reconstruction efficiency for photons rapidly decreases from p_T = 0.7 GeV/c
- p_T differential training should solve this issue
- Selected p_T intervals for training:
- 0.0-0.3
- 0.3-0.6
- 0.6-0.9
- 0.9-1.2
- 1.2-1.5
- 1.5-2.0

12

Cut based method and BDT comparison

• Efficiency and purity have steps-like structure (need to be fixed)

Cut based method and BDT comparison

• Reconstruction efficiency increased for high p_T with differential training

Conclusion

- Performance of BDT method is better than Cut based method, however default selections were not fully optimized
- p_T differential approach shows better reconstruction efficiency for higher p_T, but steps-like structure should be fixed
- BDT also have parameters that can be optimized (N_trees, etc.)

Correlation Matrix (background)

		Shirthe state of the state of						A DECEMBER OF STREET	
 Classifier	(#signal, #	backgr.)	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT 5:	(15000.3	8000000)	0.6963	42,9949	13065	79274	0.871	0.002086
 BDT_10:	ì	15000, 3	8000000)	0.8767	90.5816	10694	3244	0.7129	8.537e-05
 BDT_50:	Ć	15000, 3	8000000)	0.7413	97.9905	11412	2151	0.7608	5.661e-05
 BDT 100:	(15000, 3	8000000)	0.6547	98.4755	11608	2287	0.7739	6.018e-05
 BDT_250:	(15000, 3	8000000)	0.5184	96.7394	11966	3334	0.7977	8.774e-05
 BDT_500:	(15000, 3	8000000)	0.4759	95.9206	11709	3192	0.7806	8.4e-05
 BDT_1000:	(15000, 3	8000000)	0.4461	95.1068	11626	3317	0.7751	8.729e-05
 BDT_1000_P:	(15000, 3	8000000)	0.3311	88.7779	10793	3987	0.7195	0.0001049
 BDT_1000_D:	(15000, 3	8000000)	0.3338	88.6486	11006	4408	0.7337	0.000116
 BDT_1000_G:	(15000, 3	8000000)	0.4474	94.0585	11787	3917	0.7858	0.0001031
 BDT_1500:	(15000, 3	8000000)	0.4373	95.0268	11573	3259	0.7715	8.576e-05

Cut efficiencies and optimal cut value

Cut efficiencies and optimal cut value

DataSet	MVA	Signal efficiency:	from test sample	(from training sample)
Name:	Method:	@B=0.01	@B=0.10	@B=0.30
dataset	BDT_1000	: 1.000 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT_1500	: 1.000 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT_500	: 0.999 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT_1000_G	: 1.000 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT_250	: 0.997 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT_100	: 0.997 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT 50	: 0.992 (0.994)	1.000 (1.000)	1.000 (1.000)
dataset	BDT 1000 D	: 0.994 (1.000)	1.000 (1.000)	1.000 (1.000)
dataset	BDT 1000 P	: 0.992 (0.997)	1.000 (1.000)	1.000 (1.000)
dataset	BDT 10	: 0.983 (0.987)	1.000 (1.000)	1.000 (1.000)
dataset	BDT 5	: 0.952 (0.962)	1.000 (1.000)	1.000 (1.000)

Testing efficiency compared to training efficiency (overtraining check)

DataSet	MVA		
Name:	Method:		ROC-integ
dataset	BDT_1000	:	1.000
dataset	BDT_1500	:	1.000
dataset	BDT_500	:	1.000
dataset	BDT_1000_G	:	1.000
dataset	BDT_250	:	1.000
dataset	BDT_100	:	1.000
dataset	BDT_50	:	1.000
dataset	BDT_1000_D	:	1.000
dataset	BDT_1000_P	:	1.000
dataset	BDT_10	:	0.999
dataset	BDT 5	:	0.997

p_T - diff

		S tree	B tree	S train	B train	S test	B test
pt0	<0.3	69'539	96'721'034	15'000	15'000	1'000	1'400'000
pt1	0.3-0.6	108'357	275'641'881	15'000	15'000	1'000	2'600'000
pt2	0.6-0.9	79'975	480'041'325	15'000	15'000	1'000	6'000'000
pt3	0.9-1.2	20'019	284'515'986	15'000	15'000	1'000	14'200'000
pt4	1.2-1.5	6'049	129'631'686	5'000	5'000	1'000	21'400'000
pt5	1.5-2.0	2'757	67'519'977	1'700	1'700	1'000	24'500'000
pt6	>2.0	2'957	28'242'052	1'900	1'900	1'000	9'500'000

0.00-0.30

وغلا بالار الأبريسية الكريس معرفي المراز						يقرب والقريب ومرجع ومرجع ومرجع			
 Classifier	(#signal,	#backgr.)	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT_5:	(1000,	1400000)	0.6609	18.4241	835	1219	0.835	0.0008707
 BDT_10:	(1000,	1400000)	0.8807	21.5665	713	380	0.713	0.0002714
 BDT_25:	(1000,	1400000)	0.8111	25.5044	754	120	0.754	8.571e-05
 BDT_50:	(1000,	1400000)	0.7377	25.6242	761	121	0.761	8.643e-05
 BDT_100:	(1000,	1400000)	0.5899	25.8562	794	149	0.794	0.0001064
 BDT_250:	(1000,	1400000)	0.5013	25.6488	760	118	0.76	8.429e-05
 BDT_500:	(1000,	1400000)	0.4086	25.273	800	202	0.8	0.0001443

0.30-0.60

 Classifier	(#signal,	#backgr.)	Optimal-cut	S/sqrt(S+B)	======================================	NBkg	EffSig	EffBkg
 BDT_5:	(1000,	2600000)	0.6731	17.0036	873	1763	0.873	0.0006781
 BDT_10:	(1000,	2600000)	0.8645	24.6615	719	131	0.719	5.038e-05
 BDT_25:	(1000,	2600000)	0.8309	25.4956	775	149	0.775	5.731e-05
 BDT_50:	(1000,	2600000)	0.7585	25.8118	788	144	0.788	5.538e-05
 BDT_100:	Ć	1000,	2600000)	0.6801	26.2401	792	119	0.792	4.577e-05
 BDT_250:	(1000,	2600000)	0.5809	26.1513	809	148	0.809	5.692e-05
 BDT_500:	(1000,	2600000)	0.5189	26.1649	817	158	0.817	6.077e-05
 	-12-								

0.60-0.90

 Classifier	(#signal,	#backgr.)	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT 5:	(1000.	6000000)	0.6865	11.3898	871	4977	0.871	0.0008295
 BDT 10:	ì	1000.	6000000)	0.8619	22.5848	736	326	0.736	5.433e-05
 BDT 25:	i	1000,	6000000)	0.8539	24.3422	755	207	0.755	3.45e-05
 BDT_50:	Ċ	1000,	6000000)	0.7631	24.8194	769	191	0.769	3.183e-05
 BDT 100:	(1000,	600000)	0.6696	25.2709	813	222	0.813	3.7e-05
 BDT_250:	(1000,	600000)	0.6172	25.4006	798	189	0.798	3.15e-05
 BDT_500:	(1000,	600000)	0.5592	25.1344	782	186	0.782	3.1e-05

0.90-1.20

 =======================================									
Classifier	(#signal,	<pre>#backgr.)</pre>	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT_5:	(1000, 1	14200000)	0.6423	6.80652	857	14996	0.857	0.001056
 BDT_10:	(1000,	14200000)	0.8583	19.8638	654	430	0.654	3.028e-05
 BDT_25:	(1000,	14200000)	0.8511	21.8873	739	401	0.739	2.824e-05
 BDT_50:	(1000,	14200000)	0.7877	22.9439	747	313	0.747	2.204e-05
 BDT_100:	(1000,	14200000)	0.7256	22.4872	700	269	0.7	1.894e-05
 BDT_250:	(1000,	14200000)	0.6046	22.3752	778	431	0.778	3.035e-05
BDT_500:	(1000, 1	14200000)	0.5763	21.8762	747	419	0.747	2.951e-05

1.20-1.50

 =======================================		=======================================		=================				========	=======
Classifier	(#signal, #b	ackgr.)	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT_5:	(1000, 21	400000)	0.6469	8.73559	817	7930	0.817	0.0003706
 BDT_10:	Ć	1000, 21	400000)	0.8545	13.9663	730	2002	0.73	9.355e-05
BDT_25:	Ć	1000, 21	400000)	0.8695	16.7643	682	973	0.682	4.547e-05
 BDT_50:	(1000, 21	400000)	0.8461	19.5016	628	409	0.628	1.911e-05
 BDT 100:	(1000, 214	400000)	0.7487	19.1221	707	660	0.707	3.084e-05
 BDT_250:	(1000, 21	400000)	0.7104	19.9571	687	498	0.687	2.327e-05
BDT_500:	(1000, 21	400000)	0.6619	19.6531	699	566	0.699	2.645e-05

1.50-2.00

 Classifier	(#signal, #	======================================	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT_5:	(1000, 2	24500000)	0.6809	3.59991	856	55685	0.856	0.002273
 BDT_10:	(1000, 2	24500000)	0.8295	8.89618	706	5592	0.706	0.0002282
 BDT_25:	Ċ	1000, 2	24500000)	0.9273	12.8359	506	1048	0.506	4.278e-05
 BDT_50:	(1000, 2	24500000)	0.9575	13.805	397	430	0.397	1.755e-05
 BDT 100:	(1000, 2	24500000)	0.8835	14.9138	502	631	0.502	2.576e-05
 BDT 250:	(1000, 2	24500000)	0.7859	13.9182	607	1295	0.607	5.286e-05
 BDT_500:	(1000, 2	24500000)	0.7710	13.9886	592	1199	0.592	4.894e-05

>2.00

 		==================			=======================================	=======================================		-======================================	======
Classifier	(#signal,	<pre>#backgr.)</pre>	Optimal-cut	S/sqrt(S+B)	NSig	NBkg	EffSig	EffBkg
 BDT 5:	(1000,	9500000)	0.6695	4.92438	760	23059	0.76 0.	.002427
 BDT_10:	ć	1000,	9500000)	0.8357	7.24165	643	7241	0.643 0.	.0007622
 BDT_25:	Ċ	1000,	9500000)	0.8517	8.64029	555	3571	0.555 0.	.0003759
 BDT_50:	(1000,	9500000)	0.7273	9.78958	637	3597	0.637 0.	.0003786
 BDT_100:	(1000,	9500000)	0.6660	9.77289	659	3888	0.659 0.	.0004093
 BDT_250:	(1000,	9500000)	0.5899	9.67643	689	4381	0.689 0.	0004612
BDT_500:	(1000,	9500000)	0.5801	9.58559	638	3792	0.638 0.	0003992