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Neutron star structure
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» Neutron star are extreme objects
» They are observed
» Observations are affected by crust

© Dany Page, UNAM

R~10—-14 km, M ~ 1.4Mg




Neutron star crust

nuclei, electrons

nuclei, electrons, neutrons

A, © © 0000
crV® ©00O0
nuclear pasta

npe matter

exotic matter?
N. N. Shchechilin ©

Crust: nonunifrom nuclear matter with neutralizing background of electrons



Neutron star crust
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Infinite and Finite Nuclear Matter: (semi)finite clusters on infinite background ]




That we want to know about the crust?

[ » Composition J
= Equilibrium
= Nonequilibrium
[ > Equation of state ]
[ | T:Q
= Thermal properties
= State of matter (solid/liquid)
» Dynamical properties
One/two liquid hydro
(magneto) dynamics
» Transport properties (kinetic
coefficients )
» Elasticity, strength

nuclei, electrons

nuclei, electrons, neutrons

@ © © 0 06 ©
00 e
nuclear pasta

npe matter

exotic matter?

N. N. Shchechilin ©

> ...
Why???
7 e These properties affect observations, and thus they are required for
Z A adequate interpretation of observations

Typically: the main mystery of NSs is the core. The crustal properties
should be known accurately to avoid biases for the core properties

D.G. Yakovlev, HEA2017(?)
Crust as Cinderella of NS



That we want to know about the crust?

[ » Composition
= Equilibrium

nuclei, electrons

nuclei, electrons, neutrons

TN [ > Equation of state
= T=0
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% w nuclear pasta
: ﬁ Matter is neutral: proton charge is
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LS 1mam»(,\e ( - 80% compensated by degenerate electrons
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ote npe matter 10, . Specify for all relevant baryon number
: ’ 09%) -
beQQ exotic matter? . densities :
N. N. Shchechilin © » Composition (type of clusters)

» Thermodynamics (energy density,
pressure, chemical potentials,...)

Assignment: calculate these properties and provide a tractable procedure to include
results into applications. Results should be trustworthy!

Approach:

» Calculate energy density for given baryon number density, for each considered structure
» Select optimal structure (with minimal energy)




Recent Advances in
the Physics of the Inner Crust

“Everything should be made as simple as possible, but not simpler”

Attributed to Albert Einstein

According to Robinson [Nature 557, 30 (2018)], it can be a compressed version of lines
from a 1933 lecture by Einstein:

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience.”

How to study the crust:

» Specify nucleon interaction model (energy density functional)
» Specify an approach

» Compressible liquid drop model (CLDM)

» Extended Thomas-Fermi (ETF)

» Hartree-Fock(-Bogolyubov) (HFB)
» Calculate



Spherical clusters and pasta phases

Ravenhall et al. (1984); Hashimoto et al (1984):
In the deepest layers of the crust the clusters becomes essentially nonspherical

Cluster shape: _ _
Cylinders (spaghetti)

Increase of the density

Plates (lasagna
i (lasagna)

Spheres




Spherical clusters and pasta phases

Ravenhall et al. (1984); Hashimoto et al (1984):
In the deepest layers of the crust the clusters becomes essentially nonspherical

Inverse phase (shape of the ‘holes’): . o
Cylinders (bucatini) Pjal’ces (Ias%na)

Swiss cheese

4

§ v e
el e Tz g
o oi®ate S g
| ‘ .‘:; .... A "\3{1 e Sl
. - 23 -

Increase of the density

A

— -

. o
J

A




Wigner-Seitz (WS) approximation:
Spheres instead as unit cells

Clusters form a perfect regular lattice

Energy per cluster = energy of the cell

!




Compressible liquid drop model for inner crust

» CLDM is rather a class of modes, than one model

» CLDM does not assume that step-like profile for
proton and neutron density is real. Rather,
general feature of CLDMs is that they start from
explicit analytical expression for energy of the
cell, written as simple as possible, but
(reasonable) accurate

E = Ein + Eout + Esurf + EC + Ee

2r,

» Explicit expressions for all thermodynamic
qguantities can be obtained analytically. It
guaranties absolute (up to numerical accuracy)
thermodynamic consistency of the model (if

properly applied)

“Everything should be made as simple as possible, but not simpler”

Attributed to Albert Einstein



Compressible liquid drop model for inner crust

» CLDM is rather a class of modes, than one model

» General feature of these models is that they start

from explicit analytical expression (for energy) 4
E = Eiy, + Fout + Eswt + Eo + Ee
Nuclear energy inside cluster:
FEinn = €m(Mni,npi)Vi
Nuclear energy outside cluster: 2.
Eout = €nm (nnoa npo)vo
Surface energy
Font = o(...)S+...
Coulomb energy: two uniformly charged balls |
2 2
Ec = gZRJi (1—gu1/3+%u) T

Energy of electrons (uniform degenerate ideal gas) Surface energy? What is it?
E. = ¢€(ne)(Vo+ Vi) Something artificial???




Surface energy is natural. It can be calculated

Centelles et al. Nucl. Phys. A, 635 (1998), 193

Realistic two-phase system Reference two-phase system

Etwo phase) Ntwo phase> tho phase



Surface energy is natural. It can be calculated

Centelles et al. Nucl. Phys. A, 635 (1998), 193

Realistic two-phase system Reference two-phase system

Nno
|
Etwo phase) Ntwo phase> tho phase Eref — ei‘/;: + E0‘/07
Nref — nnzVa + nnovoa

Z ref npi‘/fi

» Surface energy is a correction, required

Eivt = Fiwo Shase — E.of to reproduce two phase system energy
» (Neutron) adsorption is required for
Nsurf — Ntwo phase — Nref ( ) . P . .
thermodynamically consistent
Zsart = Ztwo phase — Zref description of two phase boundary

f

Can be nulled by choose of the reference system

» Surface energy describe two-phase
thermodynamics precisely



Surface energy is natural. It can be calculated

Centelles et al. Nucl. Phys. A, 635 (1998), 193

Realistic two-phase system

Etwo phase) Ntwo phase> tho phase

Reference two-phase system

Nno
|
Eref — ei‘/;' + Eo‘/m
Nref — nnzVa + nnovoa
Zref — npi‘/fi

Esurf — Etwo phase — Eref
Nsurf — Ntwo phase — Nref
Zsurf — ZtWO phase — Zref

f

Can be nulled by choose of the reference system

Basic element of CLDM is a prescription to
calculate the surface properties
(=correction to the reference energy).

It should be:

> Tractable

» Enough accurate



Compressible liquid drop model: example
Ey(vs,1p) n Ec(npi, rp, w)
Ve Ve

€ = u €™ (Npsy Npi) + (1 —u) €™ (Npo, 0) +

+ €e(ne).

Explicit (algebraic) expression for the
energy density 1

6 parameters:

Nniy Npiy Nnoy Vs, Vca T'p

Minimization at fixed n,

2r,
$

System of 5 algebraic (nonlinear) equations
With clear physical meaning:

e Chemical equilibrium inside the cell (2 eqgs.)
e Beta-equilibrium (1 eq)

* Mechanical equilibrium (1 eq)

e Optimal size of the cell (1 eq)

Il

Explicit formulae for thermodynamic quantities — absolute thermodynamic consistency!

thn, P, ... Gusakov, AIC (2020)



Inner crust: Equation of state
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Compressible liquid drop model and pasta phases:
universal filling fractions for transitions

Compare two phases (A and B) with same

Mgy Npiy Npo, U — chluster/‘/::ell

A B e () (1= )™ (g, 0) 4| Loty B )

I = e (Npi, Npi ) + (1 —w)e™ (Mo, 0) H —5— + + €e(ne = uny,
chjgll ‘/(:1211 ‘/(:1211
EB EB EB

B nm nm surf C

e” = = w€e"™ (Npi, Npi) + (1 —w)e™ (o, 0) + + + €c(Ne = uny;)
ch]gll V::Ell ‘/C]gll

Oyamatsu et al. (1984); Shchechilin et al. (accepted)



Compressible liquid drop model and pasta phases:
universal filling fractions for transitions

+ __surt
A A B B
Mgy Mpiy Mo, U = chluster/‘/::ell V. V. V. |4

cell cell cell cell

Compare two phases (A and B) with same [E;}Hf Eé} : : [Efﬂf n Eg}

(adjusted to the phase A)
Size of the cell is optimal for each phase:

V. = ao° | )

Esurf — USQS(U)CL2 Esurf — QEC

2 EB — 2EB

Ec = (ene) ?,U(’LL)CLB surf C
Shape gs(u) w(uw)

sphere  (6m/2u)?/%  (9m)1/3(2uP/3 — 3u? + u¥/3) /(5 - 21/3)
spaghetti  (47u)!/? w?(u—1—1nu)/2
lasagna 2 mu?(1l —u)?/6

Oyamatsu et al. (1984); Shchechilin et al. (accepted)
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Compressible liquid drop model and pasta phases:

universal filling fractions for transitions

Shape gs(u) w(u)

sphere (61/2u)2/3  (9m)1/3(2u”/ — 3u? + uB/3) /(5 - 21/3)
spaghetti  (4mu)l/? w(u—1—1nu)/2

lasagna 2 mu?(1 —u)?/6
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Compressible liquid drop model and pasta phases:
universal filling fractions for transitions

i A A B B
Compare two phases (A and B) with same EZ N B¢ E ¢ 4+ E&
o —V V. yA yAa — vB VB
Mgy Mpiy Mpo,U cluster/ Vcell cell cell cell cell
V. = o Size of the cell for each phase:
2
Esurf — JSQS(U)(I EA = QEA
E (ene)2w(u)a® i i
= (en _
¢ ¢ Esurf — 2EC

B\ 2/3 B\ 1/3

Js w

(g_A> (_wA ) <1 |:> Phase A is unstable (have larger energy, than phase B)
S

WS approximation: Phase transitions at certain

Ut = [019j 035; 065’ 081] filling fractions (for any

nucleon interaction).

Oyamatsu et al. (1984); Shchechilin et al. (accepted)



Compressible liquid drop model and pasta phases:
universal filling fractions for transitions

; A A B B
Compare two phases (A and B) with same EZ N B¢ E ¢ 4+ E&
_ _ —V V. VA VA : : VB VB
Mgy Mpiy Mo, U = cluster/ cell cell cell cell cell
V. = a° Size of the cell for each phase:
_ 2
Esurf = 0Og0s (;j, a - Eﬁlrf = QEé
E = B _ B
¢ = (en) uw(u)a EP, — op?

B\ 2/3 B\ 1/3
Is w
(géﬁl) (—fwA ) > 1 |:> Phase A is unstable (have larger energy, than phase B)

Account for lattice structure Phase transitions at certain

uy = [0.215,0.355,0.645,0.785]  Ming fractions {for any

nucleon interaction).

Shchechilin et al. (accepted)



Pasta within Extended Thomas-Fermi calculations

(some details will follow latter)

S sphere L lasagna
- spaghetti ~ bucatini

Swiss cheese

0.00 005 006 007

Amount of pasta is model-dependent

Figure from Shchechilin et al. (accepted)
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Extended Thomas-Fermi calculations
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(almost) universal filling fractions for transitions

Differs from CLDM predictions



Extended Thomas-Fermi calculations
(almost) universal filling fractions for transitions
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» Symmetry energy affects
amount of pasta via u(n)
dependence.

» The larger symmetry energy,
the weaker is u(n)
dependence and the larger is
an amount of pasta
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Extended Thomas-Fermi calculations
(almost) universal filling fractions for transitions
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» Symmetry energy affect

amount of pasta via u(n)
dependence.

The lower symmetry energy,
the weaker is u(n)
dependence and the amount
of pasta is larger

Crust-core transition agrees
well with the instability of the
core matter

0.06

i (fm=3)

Crust (pasta)-core phase
transition predicted to be of
the first order, but very weak

Z

emlyakov & AIC (2022):
Spheres -> spaghetti transition is not associated with fission instability

Shchechilin et al. (accepted)
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Compressible liquid drop model and pasta phases:
account for curvature corrections

Compare two phases (A and B) with same E;?Hf N Eé Eﬁrf N Eg
Mgy Mpiy Mo, U = chluster/‘/::ell ‘/(;211 ‘/Céll] ‘/(;511 chu
V. = a’ Size of the cell for each phase:
Esuwt = O0s0s (U)CLQ + UCQC(U)CL} E;illlrf — 2Eé
EC’ = (6%6)2?,U(’UJ)CL5 Eﬁrf _ 2Eg
Shape gs(u) ge(u) w(u)
sphere (671/2u)%/3 2(487%u)/3 (9m)V/3 (20 — 3u® 4+ uB/3) /(5 - 21/3)
spaghetti  (47mu)'/? 27 u?(u—1—Inu)/2
lasagna 2 0 mu?(1 —u)?/6

Shchechilin et al. (accepted)



Compressible liquid drop model and pasta phases:
account for curvature corrections

Shape gs(u) ge(u) w(u)
sphere (671/201)%/3  2(487%u)1/3  (9m)Y/3(2ub/3 — 3u? 4+ u¥/3) /(5 - 21/3)
spaghetti  (4mu)'/? 27 u?(u—1—Inu)/2
lasagna 2 0 mu?(1 — u)?/6
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Shchechilin et al. (accepted)



Compressible liquid drop model and pasta phases:
account for curvature correctlons

sph( re ETF Swiss dl( ese ETF
spaghetti ETF [  CLDM+cury fit ETF masses
lasagna ETF [ CLDM+curv fit exp masses > Generally, transitions
bucatini ETF depend on o./0s,
but it almost the
i 1 1 ; same (at least for
BSk22 I I considered EDFs).
| | i | » Curvature corrections
Eis1< H II I I 1 I should be taken into
account to predict
BSk25 I I [ [ transitions within
o L cLDM
SLy4 l [ I I

0 01 02 03 04 05 06 07 08 09 10
Shchechilin et al. (accepted) U



Extended Thomas-Fermi approach

Energy density functional (Wigner-Kirkwood expansion of the Bloch density matrix)
Kirzhnits (1957), Hodges (1973), Grammaticos & Voros (1979), Brack et al. (1985)

Lrrr = (T4 + €nuc + €c + €.) dV

cell kinetic nuclear Coulomb  electron

Nucleon profile optimization: (accurate) Euler—Lagrange equations

85EETF o _ aCSEETF L . L _
8577/}3 s dony, AR

Real life nucleon profile optimization: minimization over parametrized profiles
1

e (57)

» In some sense similar to CLDM: cell energy depend on a set of parameters
» Much more computation extensive when CLDM (integrals should be taken numerically)
» Choose of the functional form of the profiles:

Use of insufficiently smooth parametrizations may reduce accuracy (and affect results)

ng(r) = NBg + Nag




Extended Thomas-Fermi approach

» Choose of the functional form of the profiles:
Use of insufficiently smooth parametrizations may reduce accuracy (and affect results)
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Peak contribute to 1+exp ( a q)
integral

Kink in parametrized

profile leads to problems

with gradient terms:
Numerical
integration see kink Analytical analysis:
as a peak of The energy can even
integrand diverge!

Kink becomes visible _ _
Numerical analysis:

Kink leads to numerical
problems

Profile looks smooth

Potekhin et al., Phys. Usp. (accepted)



Extended Thomas-Fermi approach

» Choose of the functional form of the profiles:
Profiles should not be too smooth

— PW SoftD | [ — PW
StrD +  Sharma et al 2015 | | StrD
L neutrons 3D I IFD el lrons |
e SoltD
+ mekizawa et al. 2022
- Spheres, i = 0.076 fm ™ - etk
[ protors 1 .
' | | Lasagna, 7 = 0.04 fm
- 140 2 4 6 8 10
r (fm) r (fm)

Ng (r) = NBq T NAgq

Shchechilin et al. (2024), PRC



» Choose of the functional form of the profiles:
Profiles should not be too smooth — it is not realistic and do not allow to minimize
energy properly. Even pasta sequence can be affected!

Extended Thomas-Fermi approach
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Extended Thomas-Fermi + Strutinsky intergral
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Account for shell effects (via Strutinsky integral) affect the pasta sequence

Shchechilin et al. (2024), PRC



Hartree-Fock within WS approximation
mm:/ﬁ%awhaﬂmmm%@y%uﬂ,

Self-consistent HF equations for the nucleons

Zh Jowr i (r,0') = V0 (r,0); o9 (r,0) = RW (1) Vijm (6, 6,0)

Boundary conditions within WS approximation:

Dirichlet boundary conditions Neumann boundary conditions
(q)
RW(R) =0 R =0

d?“ r=R



Hartree-Fock within WS approximation
mm:/h%aWFAﬂmmm%@y%wﬂ,

Self-consistent HF equations for the nucleons

S hy()oer oy (r,0') = 6P 0l (r.0); @ (r,0) = RO (1) Vejm (9, 6, 0)

Pressure:
7 a(q)
Boundary conditions within WS approximation:
Dirichlet boundary conditions Neumann boundary conditions
(q)
RW(R) =0 drRa”|
dr |._np

No contribution to pressure from neutrons | Affect pressure by discretization of energies

The errors incurred by the choice of approximate boundary conditions can propagate to
global thermodynamic properties. Without sacrificing the Wigner-Seitz approximation, the
equation of state can be more reliably calculated within the ETF approach.

Chamel et al. (2025)




Pressure within ETF approach (WS approximation)

Definition: P = _4db _ _ ABeen
dV dVeell
Associated with
ETF, full minimization of nucleon profiles gradient terms in ETF
Perr = —Eprr(R)+tene(R)+ n = Phom(nn(R),ny,(R), ne(R))HoPY
ETF ETF He e Hq q hom \Tln y Tp y Te

Pressure is determmed by density at the boundary!

ETF, parametrized profiles Corrections for electron polarization

PETF — Phom(nn(R)a np(R)a ne(R)) + 5Pv + 5PCoul,dir + 5Pnuc

Corrections, associated with non-optimal
density at the boundary
[due to restricted (parametrized) profiles]

Chamel et al. (2025)



Pressure within ETF approach (and WS approximation)
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electron polarization
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At higher densities corrections are dominated
by limited flexibility of parametrized nucleon
profiles (number density at the cell boundary
is not enough accurate)

Chamel et al. (2025)



Adiabatic index within ETF approach

B — E— F
| hom

(Almost) no jump at
crust-core transition
n dP
[=—-—
P dn |
|
I
I
N\ |
W\ l
Y
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/ _
0.02 0.04 0.06 0.08 0.10

i (fm™)

Chamel et al. (2025)



Summary
» CLDM can be applied to describe  P(p)

» Amount of pasta and crust-core transition is sensitive to the symmetry energy at
relevant density (the larger symmetry energy, the larger is an amount of pasta)
» Pasta phase transitions are controlled by energy difference ~ 1keV/nucleon

» At this precision, results depend on the approach (even for given density
functional)

» If shell effects are neglected, the pasta phase transition occurs at the filling
fractions, which are rather model-independent (u~0.12 for spheres -> spaghetti)

» CLDM without curvature corrections is not enough accurate to consider pasta
phase transitions (but it can predict filling fractions)

» The amount of pasta depend on the symmetry energy at the relevant densities

» Without sacrificing the Wigner-Seitz approximation, the equation of state can be more
reliably calculated within the ETF approach.

Avoiding to surrender the adequate representation
of observations, controlled by the crust

Glitches, Transients (shallow heating),
Magnetars,....

D.G. Yakovlev, HEA2017(?)
Crust as Cinderella of NS




