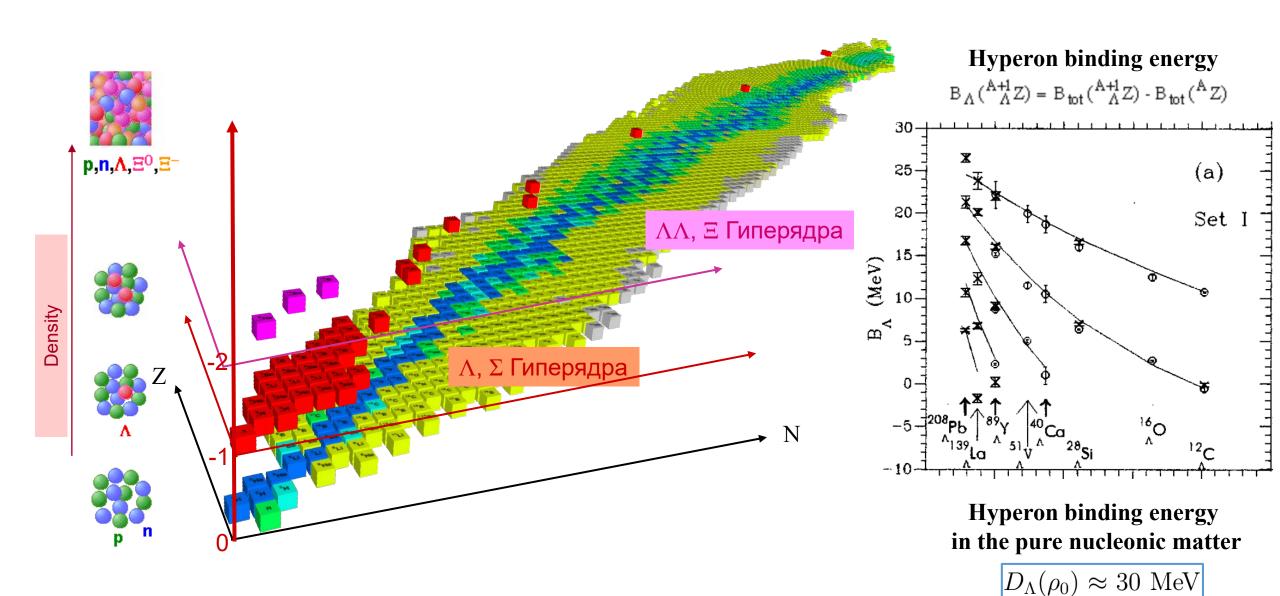
INFINUM 2025

Many-body effects of hyperonic interactions in neutron stars


S.A. Mikheev, D.E. Lanskoy, A.I. Nasakin, S.V. Sidorov, T.Yu. Tretyakova

SINP MSU, Moscow

The reported study was supported by the Russian Science Foundation, project no. № 24-22-00077

Dubna, 14.05.2025

Hypernuclei and hyperonic interactions

Skyrme interaction

AN-interaction

$$V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}) = u_{0}(1 + \xi_{0}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})$$

$$+ \frac{1}{2}u_{1}(1 + \xi_{1}P_{\sigma})[\overrightarrow{P}'^{2}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}}) + \delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\overrightarrow{P}^{2}]$$

$$+ u_{2}(1 + \xi_{2}P_{\sigma})\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\overrightarrow{P}$$

$$+ iW_{0}^{\Lambda}\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})[\overrightarrow{\sigma} \times \overrightarrow{P}]$$

Parametrization of AN-interaction	γ
YBZ6	1
YBZ2	1
SLL4'	1
LYI	1/3
YMR	1/8

Three-body forces

Density-dependent forces

$$V_{3} = V_{\Lambda NN}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N1}}, \overrightarrow{r_{N2}}) = u_{3}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N1}})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N2}})$$

$$V_{3} = V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}, \rho) = \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\rho_{N}^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$

ΛΛ-interaction

$$V_{\Lambda\Lambda}(\overrightarrow{r_1}, \overrightarrow{r_2}) = \lambda_0 \delta(\overrightarrow{r_1} - \overrightarrow{r_2})$$

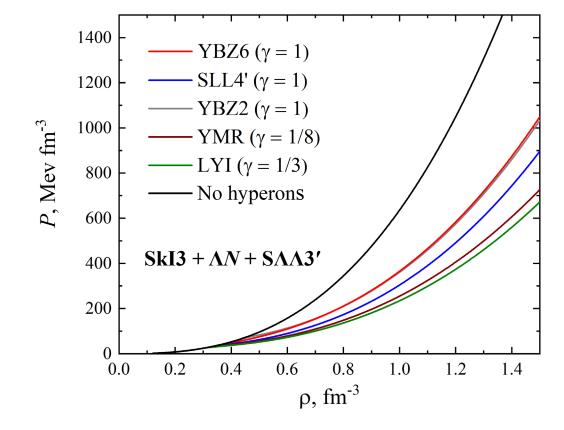
$$+ \frac{1}{2} \lambda_1 [\overrightarrow{P}^{\prime 2} \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) + \delta(\overrightarrow{r_1} - \overrightarrow{r_2}) \overrightarrow{P}^2]$$

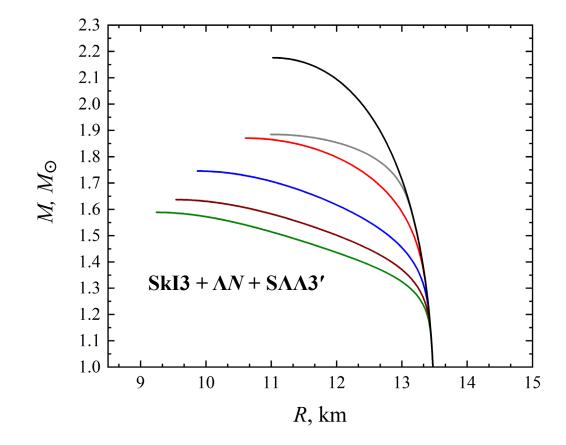
ΛΛ-interaction with density dependence

$$V_{\Lambda\Lambda} = \sum_{1}^{3} (a_i + b_i k_F + c_i k_F^2) e^{-\frac{r^2}{\beta_i^2}}$$

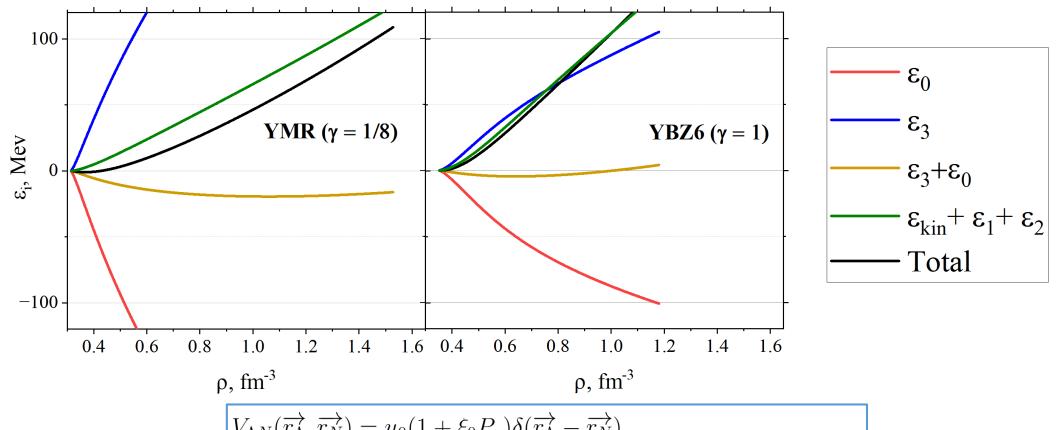
Neutron stars

Chemical equilibrium


$$\begin{cases} \mu_p + \mu_e = \mu_n \\ \mu_\mu = \mu_e \\ \mu_\Lambda + m_\Lambda = \mu_n + m_n \end{cases}$$

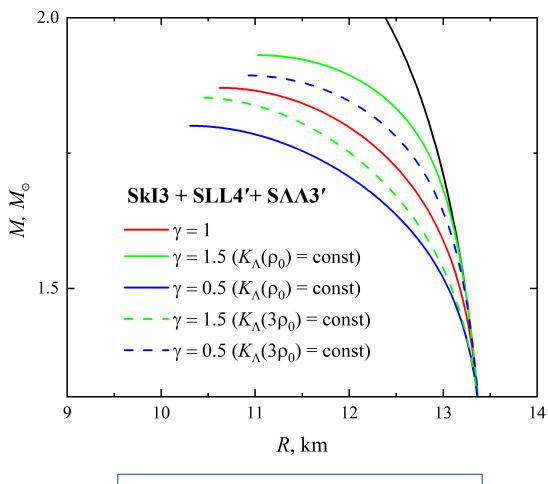

Tolman Oppenheimer Volkov equation

$$\begin{split} \frac{dP}{dr} &= \frac{G}{r^2} \frac{[\rho(r) + P(r)/c^2][m(r) + (4\pi r^3 P(r)/c^2)]}{1 - (2Gm(r)/rc^2)} \\ \frac{dm}{dr} &= 4\pi r^2 \rho(r) \end{split}$$


Hyperon puzzle

PSR J0740+6620, $M = 2.08 \pm 0.07 M_{\odot}$ PSR J0952-0607, $M = 2.35 \pm 0.17 M_{\odot}$

Contributions of various terms in energy per baryon


$$V_{\Lambda N}(\overrightarrow{r_{\Lambda}},\overrightarrow{r_{N}}) = u_{0}(1 + \xi_{0}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})$$

$$+ \frac{1}{2}u_{1}(1 + \xi_{1}P_{\sigma})[\overrightarrow{P}'^{2}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}}) + \delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\overrightarrow{P}^{2}]$$

$$+ u_{2}(1 + \xi_{2}P_{\sigma})\overrightarrow{P}'\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\overrightarrow{P}$$

$$+ \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\rho_{N}^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$

Masses and radii of neutron star for different values of γ

Changed parameters: γ, u₀, u₃

The binding energy of Λ -hyperon in the pure nucleonic matter

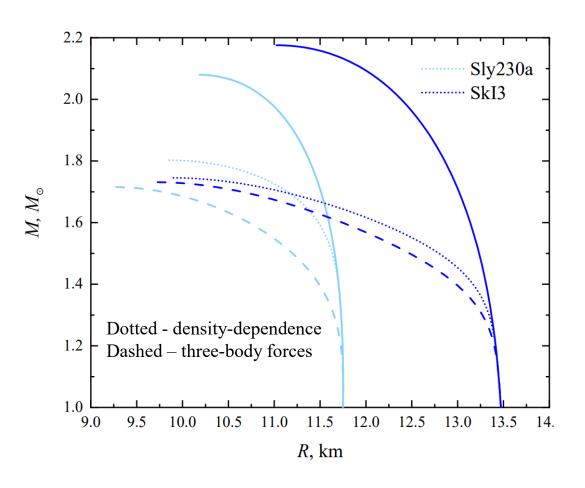
$$D_{\Lambda} = -\mu_{\Lambda}$$

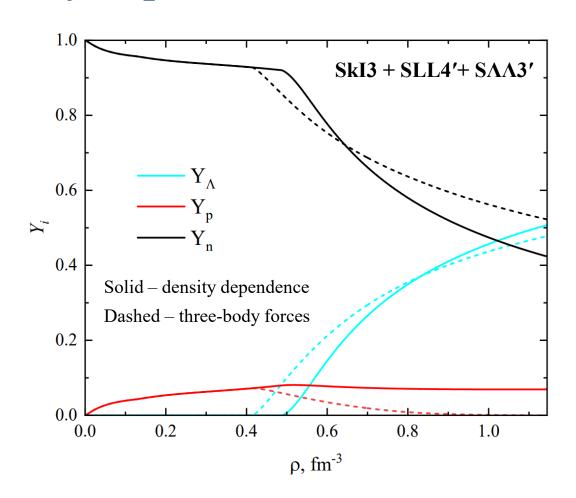
$$D_{\Lambda}(\rho_0) \approx 30 \text{ MeV}$$

Compression power of AN-interaction

$$K_{\Lambda}=3
horac{dD_{\Lambda}(
ho)}{d
ho}$$

$$K_{\Lambda}(
ho_0)=const$$

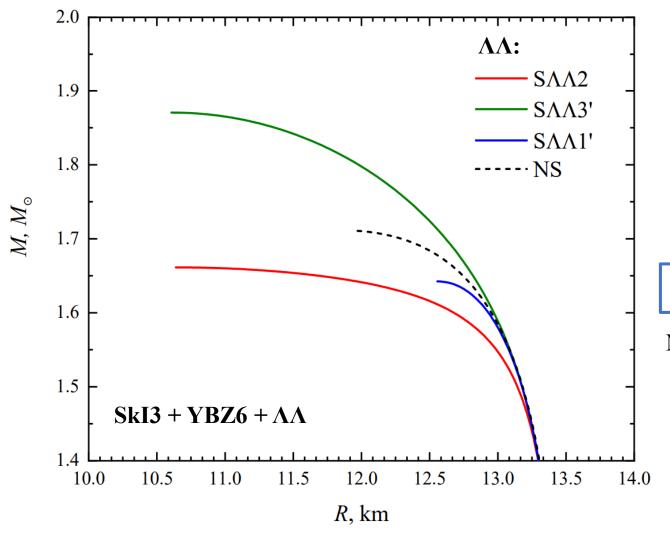

$$K_{\Lambda}(3
ho_0)=const$$


$$K_{\Lambda}(3
ho_0)=const$$

$$K_{\Lambda}(3
ho_0)=const$$

$$K_{\Lambda}(3
ho_0)=const$$

Three-body and density-dependent forces


Three-body forces

Density-dependent forces

$$V_{3} = V_{\Lambda NN}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N1}}, \overrightarrow{r_{N2}}) = u_{3}\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N1}})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N2}})$$

$$V_{3} = V_{\Lambda N}(\overrightarrow{r_{\Lambda}}, \overrightarrow{r_{N}}, \rho) = \frac{3}{8}u_{3}(1 + \xi_{3}P_{\sigma})\delta(\overrightarrow{r_{\Lambda}} - \overrightarrow{r_{N}})\rho_{N}^{\gamma}(\frac{\overrightarrow{r_{\Lambda}} + \overrightarrow{r_{N}}}{2})$$

AA-interaction

D. E. Lanskoy, 1998, Minato F., 2011

ΛΛ-interaction	Radius of interaction
SΛΛ1'	Small
SΛΛ2	Medium
SAA3'	Large

NS – density dependent $\Lambda\Lambda$ -interaction

NSC89 (Nijmegen) \longrightarrow NS (Gauss) \longrightarrow NS (Skyrme)

Conclusion

- The equation of state of the neutron star matter is determined by a complex interplay of the contributions of the different terms of the potential of ΛN -interaction and various values of γ in the density dependence can be acceptable.
- The three-body ΛNN forces in neutron stars lead to a softer equation of state than density-dependent ΛN forces and can even considerably affect the chemical composition of the star leading to disappearance of protons at a certain density.
- Density dependence in $\Lambda\Lambda$ -interaction does not have such a large effect on the characteristics of neutron stars as in ΛN -interaction interactions and this issue requires further study.

THANK YOU FOR ATTENTION

Back up

NS approximation

$$V_{\Lambda\Lambda} = \sum_{1}^{3} (a_i + b_i k_F + c_i k_F^2) e^{-\frac{r^2}{\beta_i^2}}$$

$$\begin{split} V_{\Lambda\Lambda}(\mathbf{r}_{1}, \mathbf{r}_{2}) &= \lambda_{0}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) \\ &+ \frac{1}{2}\lambda_{1}[\mathbf{P}^{'2}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) + \delta(\mathbf{r}_{1} - \mathbf{r}_{2})\mathbf{P}^{2}] \\ &+ \lambda_{2}\mathbf{P}^{'}\delta(\mathbf{r}_{1} - \mathbf{r}_{2})\mathbf{P} \\ &+ \sum_{i}\lambda_{3}^{i}\delta(\mathbf{r}_{1} - \mathbf{r}_{2})\rho_{N}^{\delta_{i}} \\ &+ \frac{1}{2}\sum_{i}\lambda_{4}^{i}[\mathbf{P}^{'2}\delta(\mathbf{r}_{1} - \mathbf{r}_{2}) + \delta(\mathbf{r}_{1} - \mathbf{r}_{2})\mathbf{P}^{2}]\rho_{N}^{\delta_{i}}. \end{split}$$

CSB in three-body forces

$$\varepsilon_3 = \frac{1}{4}u_3Y_{\Lambda}(\rho_N^2 + 2\rho_p\rho_n) = \frac{1}{8}u_3Y_{\Lambda}(3\rho_N^2 - \rho_-^2).$$

NS parameters

$$\lambda_0 = \pi^{3/2} \sum_{1}^{3} a_i \beta_i^3,$$

$$\lambda_1 = -\frac{1}{2} \pi^{3/2} \sum_{1}^{3} a_i \beta_i^5,$$

$$\lambda_3^1 = \left(\frac{3\pi^2}{2}\right)^{1/3} \pi^{3/2} \sum_{1}^{3} b_i \beta_i^3,$$

$$\lambda_3^2 = \left(\frac{3\pi^2}{2}\right)^{2/3} \pi^{3/2} \sum_{1}^{3} c_i \beta_i^3,$$

$$\lambda_4^1 = -\frac{1}{2} \left(\frac{3\pi^2}{2}\right)^{1/3} \pi^{3/2} \sum_{1}^{3} b_i \beta_i^5,$$

$$\lambda_4^2 = -\frac{1}{2} \left(\frac{3\pi^2}{2}\right)^{2/3} \pi^{3/2} \sum_{1}^{3} c_i \beta_i^5.$$

Table 1. Parameters λ_0 , λ_1 , λ_3^i and λ_4^i (9) of NS parametrization in Skyrme form						
$\lambda_0, \mathrm{MeV} \mathrm{fm}^3$	$\lambda_1,{ m MeV}{ m fm}^5$	λ_3^1 , MeV fm ⁴	λ_3^2 , MeV fm ⁵	λ_4^1 , MeV fm ⁶	λ_4^2 , MeV fm ⁷	
-833.1	646.4	1268.8	-960.5	-735.4	625.0	