

Hypernuclear properties and hyperonic interactions

D. Lanskoy, <u>T. Tretyakova</u> Lomonosov Moscow State University

tretyakova@sinp.msu.ru

Dubna, May 2025

Hypernuclear systems

- Experiment vs theory state of art
- Some hot points:
 - Drip lines
 - Hypertriton
 - Double-strange systems

3

Gal, Hungerford, Millener RMP 88(2016)035004

Λ spin-orbit splitting (keV): 150 in ${}^{13}_{\Lambda}$ C & related 43 in ${}^{9}_{\Lambda}$ Be Precise structure *p*- hypernuclei ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{10,11}_{\Lambda}$ B, ${}^{12,13}_{\Lambda}$ C, ${}^{15}_{\Lambda}$ N, ${}^{16}_{\Lambda}$ O

 $\Sigma^0 \rightarrow \Lambda \gamma ~(74 \text{ MeV})$ Ν Ν $\Sigma N \rightarrow \Lambda N ~(\sim 75 \text{ MeV})$ (VaM/rs/dul) -B_{Σ+}=0 -B_{Σ0}=0 ⁴He(K⁻,π⁻) 30 = ⁴He(K⁻, π^+) 025 20/qEdΩ 15 10 5 0 40 50 (MeV) 20 30 50 -30 -20 10 -40 -10 -B_Σ

 $\Sigma^{\pm} \rightarrow N\pi ~(\sim 113 \text{ MeV})$

> $B_{\Sigma+}({}_{\Sigma}^{4}\text{He}) = 4.4 \pm 0.3 \pm 1 \text{ MeV}$ $\Gamma = 7.0 \pm 0.7^{+1.2}_{0.0} \text{ MeV}$

$$U_{\Sigma}(r) = (U_0 + U_L(\mathbf{\tau}_{core}\mathbf{\tau}_{\Sigma})/A) \frac{\rho(r)}{\rho_0}$$

 $U_0 = +30 \pm 20 \text{ MeV}$ $U_L \approx 80 \text{ MeV}$

Exitation energy spectra of ⁴He(K⁻, π^-) at 600 MeV/c K⁻ momentum (BNL AGS) [Nagae et al PhysRevLett 80 (1998)1605]

T. Nagae, in HandBook in Nuclear Physics. Springer 2023

a unique source of information on baryon interactions in the S=-2 sector

$$B_{\Lambda\Lambda} \begin{pmatrix} A \\ \Lambda\Lambda \end{pmatrix} = B \begin{pmatrix} A \\ \Lambda\Lambda \end{pmatrix} - B \begin{pmatrix} A^{-2} \\ Z \end{pmatrix}$$

$$\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} - 2B_{\Lambda}$$

•C(K⁻,K⁺) reaction to produce Ξ⁻
then stop it in emulsion
(H. Takahashi et al., PRL87(2001)212502)

- •Binding energy of ${}^{6}_{\Lambda\Lambda}$ He is obtained to be $B_{\Lambda\Lambda} = 7.3 \pm 0.3$ MeV (from $\alpha + 2\Lambda$)
- In order to extract $\Lambda\Lambda$ interaction, we take
 - $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} 2B_{\Lambda}(^{5}_{\Lambda}He)$ = 1.0±0.3 MeV
 - \rightarrow weakly attractive

Phys Rev Lett 87 (2001) 212502

•C(K⁻,K⁺) reaction to produce Ξ⁻
then stop it in emulsion
(H. Takahashi et al., PRL87(2001)212502)

- •Hyperon binding energy of ${}^{6}_{\Lambda\Lambda}$ He is obtained to be
 - $B_{\Lambda\Lambda}$ = 6.91±0.16 MeV (from α+2Λ)
- In order to extract $\Lambda\Lambda$ interaction, we take
 - $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} 2B_{\Lambda}(^{5}_{\Lambda}He)$ =0.67±0.17 MeV
 - \rightarrow weakly attractive

Ahn et al Phys Rev C 88 (2013) 014003

K. Nakazawa, in HandBook in Nuclear Physics. Springer 2023

Ev. name	Nuclide	Target	$B_{\Lambda\Lambda}$ (MeV)	$\Delta B_{\Lambda\Lambda}$ (MeV)	Comments	
Nagara	$^{6}_{\Lambda\Lambda}$ He	¹² C	6.91 ± 0.16	0.67 ± 0.17	Uniquely identified	
Danysz et al.	$^{10}_{\Lambda\Lambda}$ Be	¹² C	14.7 ± 0.4	1.3 ± 0.4	$^{10}_{\Lambda\Lambda}$ Be \rightarrow^9_{Λ} Be* (<i>Ex.</i> = 3.0 MeV)	
E176	$^{13}_{\Lambda\Lambda} B$	¹⁴ N	23.3 ± 0.7	0.6 ± 0.8	$^{13}_{\Lambda\Lambda}$ B $\rightarrow^{13}_{\Lambda}$ C* (Ex. = 4.9 MeV)	
Demachi-	¹⁰ , Be*	¹² C	11.90 ± 0.13	-1.52 ± 0.15	Most probable (topology)	
Yanagi	ΛΛΞΟ				$Ex. \approx 2.8 \mathrm{MeV}$ for $^{10}_{\Lambda\Lambda}\mathrm{Be}^*$	
Mikage	$^{6}_{\Lambda\Lambda}$ He	¹² C	10.01 ± 1.71	3.77 ± 1.71	Most probable (mesonic decay)	
	$^{11}_{\Lambda\Lambda} Be$	¹² C	22.15 ± 2.94	3.95 ± 3.00		
	$^{11}_{\Lambda\Lambda}$ Be	¹⁴ N	23.05 ± 2.59	4.85 ± 2.63		
Hida	$^{11}_{\Lambda\Lambda}$ Be	¹² C	20.83 ± 1.27	2.61 ± 1.34		
	$^{12}_{\Lambda\Lambda} Be$	¹⁴ N	20.48 ± 1.21	(2.00 ± 1.21)	Assumed 10.24 MeV for $B_{\Lambda}(^{11}_{\Lambda}\text{Be})$	
Mino	$^{10}_{\Lambda\Lambda}$ Be	¹⁶ O	15.05 ± 0.11	1.63 ± 0.14		
	$^{11}_{\Lambda\Lambda}$ Be	¹⁶ O	19.07 ± 0.11	1.87 ± 0.37	Most probable (χ^2 minimum)	
	$^{12}_{\Lambda\Lambda}$ Be	¹⁶ O	13.68 ± 0.11	-2.7 ± 1.0		
D001	$^{8}_{\Lambda\Lambda}$ Li	¹² C	17.50 ± 1.46	6.34 ± 1.46		
	$^{10}_{\Lambda\Lambda} Be$	¹⁴ N	15.05 ± 2.78	1.63 ± 2.78	Likely by $B_{\Lambda\Lambda}$	

Ξ^- -Nuclear Bound States

KEK E373 and J-PARC E07 experiments

Coulomb-Assisted $\Xi^{-14}N$ 1p_{Ξ^{-}} nuclear bound state Hayakawa (J-PARC E07), PRL (2021)

Yoshimoto, PTEP (2021)

KINKA (E373) $\Xi^{-} + {}^{14}\text{N} \rightarrow {}^{9}_{\Lambda}\text{Be} + {}^{5}_{\Lambda}\text{He} + n$ IRRAVADDY (E07) $\Xi^{-} + {}^{14}\text{N} \rightarrow {}^{5}_{\Lambda}\text{He} + {}^{5}_{\Lambda}\text{He} + {}^{4}\text{He} + n$

 \rightarrow 1s₌- nuclear state

Ξ hypernucleus (¹⁵C [Ξ⁻-¹⁴N])

U₀₅ ~ 14 MeV

K. Nakazawa, in HandBook in Nuclear Physics. Springer 2023

Λ hypernuclei near drip-lines

- Chart of Λ hypernuclei
 - Particle-stable core nuclei guarantee stable Λ hypernuclei
 - Still there are many unobserved Λ hypernuclei
 - Λ -hyperon may reinforce the nuclear binding
 - Glue-like role of Λ -hyperon: also particle-unstable nuclei may form core of stable Λ hypernuclei

L. Majling, Nucl. Phys. A585 (1995) 211c

Neutron-rich hypernuclei Study by using DCX reaction: ${}^{10}_{\Lambda}$ Li

- KEK E521: P.K. Saha et al. PRL 94 (2005) 052501
 - Study of the ${}^{10}B(\pi^-,K^+)$ reaction
 - Successfully produced ¹⁰_ALi
 - Almost background free
 - Promising production method
 - Tiny production cross section

$$\frac{d\sigma}{d\Omega}$$
(DCX, $^{10}_{\Lambda}$ Li) \approx 10 nb/sr

Reaction mechanisms

DCX:
$$\begin{cases} \pi^- p \to K^0 \Lambda \\ K^0 p \to K^+ n \end{cases} \begin{cases} \pi^- p \to \pi^0 \Lambda \\ \pi^0 p \to K^+ n \end{cases}$$

 Σ -admixture doorway state:

 $\begin{vmatrix} {}^{10}_{\Lambda} \text{Li} \rangle = \alpha \begin{vmatrix} {}^{9}_{} \text{Li} \otimes \Lambda \rangle + \beta \end{vmatrix} {}^{9} \text{Be} \otimes \Sigma^{-} \rangle$ $\pi^{-} p \to K^{+} \Sigma^{-}$

Tretyakova, Lanskoy Phys. At. Nucl. 66 (2003) 1651

Neutron-rich hypernuclei

Study by using DCX reaction: ${}^{6}_{\Lambda}H$

- FINUDA: M. Agnello et al. PhysRevLett 108 (2012) 042501
 - Study of the ⁶Li(K_{stop}^{-}, π^{+}) reaction
 - $^{6}\text{Li}(K_{\text{stop}}^{-},\pi^{+})^{6}_{\Lambda}\text{H} \qquad {}^{6}_{\Lambda}\text{H} \rightarrow {}^{6}\text{He} + \pi^{-}$

- Reported 3 candidate events of ${}^{6}_{\Lambda}$ H production

 $B_{\Lambda}(^{6}_{\Lambda}\text{H}) = (4.0 \pm 1.1)\text{MeV}$

$$\frac{BR(DCX, {}^{6}_{\Lambda}H)}{BR(NCX, {}^{12}_{\Lambda}C)} \approx 6 \times 10^{-3}$$

$$\frac{BR(DCX, {}^{6}_{\Lambda}H)}{BR(NCX, {}^{4}_{\Lambda}He)} \approx 3 \times 10^{-4}$$

- J-PARC-E10: H. Sugimura et al., PhysLettB 729 (2014) 39
 - Missing-mass spectrum of the ${}^{6}\text{Li}(\pi^{-},\text{K}^{+})$ reaction

$$\frac{d\sigma}{d\Omega} (\text{DCX}) / \frac{d\sigma}{d\Omega} (\text{NCX}) < 1.5 \times 10^{-4}$$

$$DCX: (\pi^{-}, K^{+}) \quad \text{NCX:} (\pi^{+}, K^{+}) \text{ for } {}^{12}_{\Lambda}C$$

No clear peak of ${}^{6}_{\Lambda}$ H production in threshold region

cross section is extremely smaller than it was expected

Neutron-rich Λ hypernuclei

-	Proposal $^{8}_{\Lambda}$ H							
	L. Majling Nucl Phys A 585 (1995) 211c							
	$^{6}_{\Lambda} H \rightarrow$	$^{4}_{\Lambda}\text{H} + n$	+ <i>n</i>					
$S_{2n}(^{6}_{\Lambda}\mathrm{H}) =$	$S_{2n}($	⁵ H) + <i>B</i>	$_{\Lambda}(^{6}_{\Lambda}H) -$	$B_{\Lambda}({}^{4}_{\Lambda}\mathrm{H})$				
	~-2	2	(4.0)??	2.1				
$^{8}_{\Lambda}\text{H} \rightarrow ^{4}_{\Lambda}\text{H} + 4n$								
$S_{4n}\left({}^{8}_{\Lambda}\mathrm{H}\right) = S_{4n}\left({}^{7}\mathrm{H}\right) + B_{\Lambda}\left({}^{8}_{\Lambda}\mathrm{H}\right) - B_{\Lambda}\left({}^{4}_{\Lambda}\mathrm{H}\right)$								
	57	??	2.1					
$B_{\Lambda}(^{8}_{\Lambda}\mathrm{H}) \sim 7-8 \mathrm{MeV}$?								
Hydrogen isotope	S	E	611	7				
	⁴ H	۶H	٥H	/H				
Decay mode	n	2n	3 <i>n</i>	4 <i>n</i>				

1.7÷2.4

2.3±0.5

E_{res} [MeV]

3.2

-21

0.57 +42

Proton-rich Λ hypernuclei

2p separation energy in ${}^9_{\Lambda}$ C

 ${}^{8}C \rightarrow {}^{4}He + 4p$ ${}^{9}C \rightarrow {}^{7}Be + 2p$ calc $S_{2p}({}^{9}C) = S_{2p}({}^{8}C) + B_{\Lambda}({}^{9}C) - B_{\Lambda}({}^{7}ABe)$ $exp: -2,14 \text{ M} \Rightarrow B$ $exp: 5,16 \text{ M} \Rightarrow B$

Different NN and Λ N interactions The better the description of $B_{\Lambda} \begin{pmatrix} 9 \\ \Lambda B \end{pmatrix}$ and $B_{\Lambda} \begin{pmatrix} 9 \\ \Lambda Li \end{pmatrix}$, the greater 2p separation energy in ${}_{\Lambda}^{9}$ C. $S_{2p} \begin{pmatrix} 9 \\ \Lambda C \end{pmatrix} > 0.$

 $^9_{\Lambda}$ C should be bound

Whether ${}^{17}_{\Lambda}$ F, ${}^{20}_{\Lambda}$ N and ${}^{20}_{\Lambda}$ Mg hypernuclei are bound remains questionable.

Proton-rich Λ hypernuclei

Double-strangeness hypernuclei. 2p separation energy in $^{14}_{\Lambda\Lambda}$ O

$$S_{2p} \begin{pmatrix} 14\\\Lambda\Lambda 0 \end{pmatrix} = S_{2p} \begin{pmatrix} 12\\0 \end{pmatrix} + B_{\Lambda\Lambda} \begin{pmatrix} 14\\\Lambda\Lambda 0 \end{pmatrix} - B_{\Lambda\Lambda} \begin{pmatrix} 12\\\Lambda\Lambda C \end{pmatrix}$$

as function $B_{\Lambda} \begin{pmatrix} 1^{3} \\ \Lambda \end{pmatrix}$ for different NN and Λ N Skyrme parameter sets. Hypernucleus ${}^{13}_{\Lambda}$ O is unbound; a second hyperon addition completes the binding of the hypernucleus.

 $^{14}_{\Lambda\Lambda}$ O should be bound

Lanskoy, Sidorov, Tretyakova EPJ A 58 (2022) 203

Lightest hypernuclei Hyperhydrogen and hyperhelium

Hypertriton ³_AH

ALICE PhysRevLett 131 (2023) 102302

∧ hypernuclei A=4

ALICE PhysRevLett 134 (2025) 162301

∧ hypernuclei A=4

Charge Symmetry Breaking (CSB) in AN-interaction

- The difference between *pp* and *nn*-interaction, between Λp- and Λn-interaction
- Different character of CSB in the singlet and triplet ΛN-pair states

Predictions: Au+Au, $\sqrt{s_{NN}}$ = 3 GeV – yield per event ~ 10⁻⁵–10⁻⁴ [Buyukcizmeci EPJ A61(2025) 23] ₂₂

Ξ

Ξ

D. E. LANSKOY AND Y. YAMAMOTO PRC 69, 014303 (2004)

 $m_{\pm-} - m_{\pm0} = 6,85 \pm 0,21$ MeV (PDG 2024)

Five-baryons wave function:

$$\begin{vmatrix} {}_{\Lambda\Lambda}{}^{5}\mathrm{H} \rangle = \alpha_{1} \begin{vmatrix} {}^{3}\mathrm{H} \otimes \Lambda\Lambda \rangle + \beta_{1} \end{vmatrix} {}^{4}\mathrm{He} \otimes \Xi^{-}p \rangle$$

$$\begin{vmatrix} {}_{\Lambda\Lambda}{}^{5}\mathrm{He} \rangle = \alpha_{2} \end{vmatrix} {}^{3}\mathrm{He} \otimes \Lambda\Lambda \rangle + \beta_{2} \end{vmatrix} {}^{4}\mathrm{He} \otimes \Xi^{0}n \rangle$$

$$P_{\Xi} = \beta^{2}$$

FIG. 1. $\Delta B_{\Lambda\Lambda}$ (a) and Ξ admixture probabilities p_{Ξ} (b) as functions of volume integral $\int V_{\Lambda\Lambda, \Xi\alpha} d^3r \ln_{\Lambda\Lambda} {}^5\text{H}$ and $_{\Lambda\Lambda} {}^5\text{He}$ for $\Xi\alpha$ Isletype potentials and the Isle-type Λ -core potentials.

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

ML for $\Lambda\Lambda$

Full Length Article

A novel application of machine learning to detect double- Λ hypernuclear events in nuclear emulsions

Yan He^{a,b}, Vasyl Drozd^{b,c}, Hiroyuki Ekawa^b, Samuel Escrig^{b,d}, Yiming Gao^{b,e,f}, Ayumi Kasagi^{b,g}, Enqiang Liu^{b,e,f}, Abdul Muneem^b, Manami Nakagawa^b, Kazuma Nakazawa^{b,h}, Christophe Rappold^d, Nami Saito^b, Takehiko R. Saito^{a,b,i,j}, Shohei Sugimoto^{b,j}, Masato Taki^g, Yoshiki K. Tanaka^b, He Wang^{b,e,f}, Ayari Yanai^{b,j}, Junya Yoshida^{b,k}, Hongfei Zhang^{a,l}

Conclusions

- Hypernuclei remain the main source of information on hyperonic interactions (but: density is proportional to nuclear one, nuclear cores are from valley of stability)
- Extending the hypernuclear map up to drip-lines provides data on fine interaction features (density dependence, CSB and so on)
- Information on $\Lambda\Lambda$, ΞN and ΣN interactions is very much needed we are waiting for data on the corresponding hypernuclei
- New player in the experiment: Heavy Ion collisions data on the lightest systems (the clearest information on interactions)

THANK YOU FOR YOUR ATTENTION!

Back-up

Notation

- A: Total number of baryons (nucleon & hyperon)
- Z: Total charge
- Λ : hyperon (other examples -- Σ , Ξ , ...)
- Some examples:
 - 1. $3p + 3n + 1\Lambda \rightarrow \frac{7}{\Lambda}Li$
 - 2. $2p + 2n + 2\Lambda \rightarrow {}^{6}_{\Lambda\Lambda}He$
 - $\begin{array}{c} 3. \quad 1p + 2n + 1\Sigma^{+} \\ 2p + 1n + 1\Sigma^{0} \\ 3p + 0n + 1\Sigma^{-} \end{array} \end{array} \right\} \xrightarrow{4} \Sigma^{+} \Sigma^{+} \Sigma^{+}$

 Λ spin-orbit splitting (keV): 150 in ${}^{13}_{\Lambda}$ C & related 43 in ${}^{9}_{\Lambda}$ Be

H. Tamura, in HandBook in Nuclear Physics. Springer 2023

Σ[–] Atoms

Nagara event, ${}^{6}_{\Lambda\Lambda}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}$ Heg.s.)=6.91±0.16 MeV, unambiguously determined.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$ (no ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to 2 Z=1 recoils + n.

Tools to access n-rich Λ hypernuclei

heavy-ion collisions vs meson- and electron- induced reaction

- Old emulsion experiments with stopped-K⁻ beams
 - Hypernuclear species were limited and yield was low
- Charge-exchange reactions
 - SCX: (e,e'K⁺), (K⁻, π^0) DCX: (π^- ,K⁺), (K⁻, π^+)
- Relativistic heavy-ion collisions

SCX: Single Charge-eXchange DCX: Double Charge-eXchange

L. Majling, Nucl. Phys. A585 (1995) 211c

34

Neutron-rich hypernuclei Study by using DCX reaction: ${}^{6}_{\Lambda}$ H (1)

- FINUDA: M. Agnello et al. PRL 108 (2012) 042501
 - Study of the ⁶Li(K_{stop}^{-}, π^{+}) reaction

Neutron-rich hypernuclei Study by using DCX reaction: ⁶ H (2)

• J-PARC-E10: H. Sugimura et al., PLB 729 (2014) 39

– Missing-mass spectrum of the ⁶Li(π^- ,K⁺) reaction

No clear peak of ${}^{6}_{\Lambda}$ H production

 6 Li(π^{-} ,K⁺)X θ_{LAB} =2-14 deg.

Neutron-rich hypernuclei

Tretyakova, Lanskoy EPJ A 5, 391 (1999)

Structure 12Be-L SkHF, AMD

 ${}^{12}{}_{\Lambda}\text{Be}: \text{I=3/2}$

Parity inversion in ¹¹Be. Ground state is $1/2^+$ instead for $1/2^-$. What's happening in ¹²_ABe? Measurement of low-lying 0⁻, 1⁻, 0⁺ and 1⁺ states may be possible.

Proton-rich Λ hypernuclei

Lanskoy, Sidorov, Tretyakova EPJ A. 2022