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Physics: Quantum gases



Why cold atoms are interesting?

v" Ultracold gases are “simple” systems
v Both fermions (SLi, 87Sr,...) and bosons (]"Rb, *Na, ... ) can be studied
v Interaction can be tuned to arbitrary values (via resonance scattering)

v" Various internal symmetries (SU(N), SO(N),Sp(N)...) can be realized

N=2+1 \ SU(N) Fermions /
o 'MYb I=1/2 SU(2)
o 'Yb I=5/2 SU(6)
o 87Sr  I=9/2 SU(10)
o 1MYp +173Yp SU(2) x SU(6) pic. by Sonderhouse
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Scales in cold atoms

Lenght scales (in units of Bohr radius)

Van der Waals length ¢y 4y ~ 10 = 100
s-wave scattering length a ~ 10 = 200
interparticle distance ¢ ~ 800 <+ 3000

de Broglie wavelength (7 ~ (1 + 4) x 10*

size of the system L ~ 10°
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Energy scales (e.g.%Li)
o T, ~0.16 Tr ~ 0.1uK

o T, ~ 10 eV

where T ~ n?/3

and n ~ 103¥cm—3

HTS vs Gases
o T"™ ~ 0.01 TH™ ~ 100K

cold atoms are “hot” matter
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V' Critical exponents €

XY-model universality class.

Magnetization in SU(N) system within
the HF-method [Cazalilla,New J. Phys'23]

o MF and HF predict 2nd order
phase transition for SU(2), and
the 1st o.p.t. for SU(N > 2), due
to the cubic term in the Landau
free energy

F=aM? +bM’ + cM*

o Qualitative agreement with QMC



Microscopic action
v Partially bosonized U(V)-symmetric fermionic action (kg =h=2m =1,6=1/T)

B
S :/dr/x [1[)& (0 — V% — ) Yy — % tr(plp) + %(@Ea@ablzb + 1/)a<ﬂlb1/)b)}
0 \

11/2 =1/8ma - CA |

V" Phase transitions — nonzero expectation value (o) ~ (Qap)

_ 0 Iny2
) ( Ingz 0 )

V" Symmetry breaking U(N) — USp(N) = {h € SU(N) | hJRT = J}
v" Mean-field predictions:

o continuous phase transition VN
o The critical temperature 7. /11 ~ 0.66 and the zero-temperature gap A/pu = 1.16 in
the unitary regime (1/a — 07) VN



Functional RG in a nutshell



Computation of free energy

V" The partition functional is given by the classical action

2] = / Do exp {~S[6] + Jo} |

v The Legendre transform yields the quantum effective action (depends on ¢:
magnetization, superfluid gap, and etc.)

)
F[gp] = JWQO_IHZ[J@]’ Y= EIHZ[J]

J=J,

v The grand potential, pressure and entropy density

. Q oP
Q:melnlj[go], P——v, S_<8_T)u'



Effective average action

v" The modified partition functional

mm=/meL£M—A&M+ML

with the quadratic additive

Asil6l = 5 [ -0) Rulp) 9(0)



Effective average action

v" The modified partition functional

mm=/DMwL£M—A&M+JM,

with the quadratic additive Ri(p) > oo for k — o

ASi6) = 5 [ -0 Rulp) 90

(p)

Ri(p) =0  fork —0

Ri(p) ~ k* forp<k
(p)

~ 0 forp >k



Effective average action

v" The modified partition functional

_ / D exp {—S[6] — AS[¢] + Jo},

with the quadratic additive Ri(p) = oo for k — o0
Ri(p) =0  fork —0
Aso] = 5 [ o) B o1p).
Ri(p) ~ k* forp<k
R ~ 0 forp >k
v The effective average action functional «(p) b
4]
Lile] = Jepp —In Zy[Jpo] — ASkle], ¢ = 57 In Z[J]



From functional integral to functional DE

@ Flow equation (Wetterich, Moris)

V' T'p=p ~ S — classical action — input

fast modes

APt arlel = T { (CPle] + Re) 108 |, £ = In(k/A)
a V' T'y—g = I' = quantum effective action — output

slow modes Some features:

k>p>0 o The flow equation is exact

o Non-perturbative approximation is possible

0 o Equilibrium and far-from-equilibrium systems



Treatment of large spin fermions



Non-perturbative approximation

V" The truncated effective average action I'y; in the leading order of the derivative expansion

= [dr / [zza (00 — V% — 1) Yo + Yi tr(¢T008) + Zi tr(VoTV ) + Vi(679)

Tt~

gL

|2

(Yadavt + ol i) + O(82, V4, ... )}
v" The initial conditions at the UV scale

Zy=0, Ya=0, ga=1 Va(¢'o) (¢70)

! t

~———tr
2Ap

v" We use 6-regulators. This allows for an analytical treatment of the loop integrals

RE ~ (12 — )0k — a?), R ~sen(q? — p)(k* — o — p))0(k> — o> — pl),



FRG flow equations
General form of the scale-dependent potential Vi.(¢7¢) = T'x/VB = Vi(p1, p2, . .. ), where
plztr(¢T¢), PaEtT(QbTQﬁ*IN%) , a=2,3,...
The projection of the FRG equation onto the background A J yields
U = 0Tk /VB, Uk(p1) = Vi(p1,0,0,...), P = —ngnUk.Ho
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L dy2 [ Ga T 0o _ ar + ac
0:U, =k <2m(1 +2np(vaaas)) + (N —2)(N + 1)7\/W (14 2np( an%)))

4
2

1
~NE2 (1= 2np () x ((u+ k)
ay
here

4
Qo= ax = Zek* + UL, a5 = Zk® + UL+ 20U, ag = Z4k® + Uf + 22 W),

OVi(p1,p2, p3,---)
dp2

Wi = Wi(p1) =

;o ay =k +gim/N
p2=0,p3=0,...



Discontinuous phase transition (v > 4)
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Temperature dependence of the full effective potential
U= Uk_>0 and W = Wk—>0-

Alp

Scale dependence of the running potential Uy, and v’ lst-order transition unlike MF predictions
the coefficient of the invariant expansion Wy.

[n, = C3Nu3/2,Cy = 1/672] V" Fermionic part of FRG eq. yields MF results



Pressure and gap (v > 4)

v The pressure change across the

10.6
transition is
1043 §P =Py — Ps
<
=(-U(0)) — (—-U(A
v" The entropy density jump is
00 T T ,"“,“"'T“"0.0 _
0.195 0.200 0.205 ds =s(T. +0) — s(T. - 0)
T/u o)
=| =0P
(57°7)

Typical temperature dependence of the pressure change
and the superfluid gap in the vicinity of the first-order
phase transition.



Thermodynamic parameters of the first-order transition
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Critical temperature T../u and zero-temperature
gap A /y for the SU(2) system, which
undergoes a continuous phase transition.

Method Te/ 1 A0/
Experiment (Ku'l2)  0.40

FRG (Boettcher'14)  0.38(2) 1.04(15)
LW (Haussmann’07)  0.40 1.27
QMC (Burovski'06)  0.31(2)

Mean field 0.66 1.16




And in conclusion...

We investigated the superfluid phase transition in an SU(N)-symmetric Fermi gas with
N distinct spin states using the functional renormalization group. Our results reveal a
fluctuation-induced first-order phase transition for N > 4, which is absent at the
mean-field level.

We provided quantitative predictions for the critical temperature, and for the jumps in
the superfluid gap and entropy density as functions of N. With increasing N, the critical
temperature decreases, while the discontinuities become more pronounced, indicating a
stronger first-order transition.

We did not address the determination of the equation of state n = n(u, T, as).

We also did not explore possible refinements of our results that could arise from
extending the truncation of the effective action or employing a frequency-dependent
regulator Ry (w,,p) (typically affecting values by a few percent).
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