Directed flow of protons and deuterons at heavy-ion collisions with BM@N

M.Mamaev, I.Zhavoronkova, P.Parfenov, V.Troshin, A.Demanov, A.Taranenko MEPhI, JINR

The work has been supported by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA (JINR) megascience experimental complex" № FSWU-2025-0014

INFINUM 2025 12/05/2025

Azimuthal anisotropic flow 1989-2000

The anisotropy is quantified by decomposing the azimuthal distribution in a Fourier series

$$v_n = \left\langle \cos n(\phi - \Psi_{RP}) \right\rangle$$

 v_1 is directed flow, v_2 — elliptics and v_3 — triangular

Compressed baryonic matter at the laboratory and in astrophysics

Equation of state (EoS) of compressed baryonic matter

EOS relates the density (n_B), pressure (P), temperature (T), energy (E), and isospin asymmetry $(n_p-n_n)/n_B$

 $v_n \ at \ the \ energy \ of \ NUCLOTRON-NICA {\tiny P. \ DANIELEWICZ, R. LACEY, W. LYNCH} \\ {\scriptstyle 10.1126/science.1078070}$

- Ambiguity of comparing experimental v_n with theoretical predictions:
 - v_1 suggests K_{nm}~210 MeV and v_2 suggests K_{nm}~ 300 MeV
- Additional measurements are needed to address the discrepancy of K_{nm}

Need for a new measurements for v_1

The new results are needed to address the discrepancy of dv_1/dy measured by E895 and STAR

FOPI: Nucl.Phys.A 876 (2012) STAR: Phys.Lett.B 827 (2022) E895: Phys.Rev.Lett. 84 (2000)

The BM@N experiment ("Baryonic matter at Nuclotron") 500M of Xe+CsI at E_{kin} =3.8A GeV were collected in the 8 early 2023

Nucl.Instrum.Meth.A 1065 (2024)

Central tracked inside the analysing magnet

The symmetry plane is estimated using the azimuthal asymmetry of the spectator fragment energy deposition in FHCal 7

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Non-uniform acceptance corrections in BM@N

Performance study of the BM@N experiment for measuring v_1 and v_2 in Xe+CsI collisions at the energies 2A, 3A and 4A GeV

Symmetry plane resolution in Xe+CsI at E_{kin}=3.8A GeV

All the R₁ estimations are in a good agreement which suggests low non-flow contribution

Proton v_1 vs rapidity and transverse momentum

Mamaev M. Int. J. Mod. Phys. E. - 2024. - T. 33, №11. - C. 2441009.

Proton and deuteron v_1 vs rapidity and transverse momentum

Deuteron data by I.Zhavoronkova

$dv_1/dy|_{vcm=0}$ vs collision energy

FOPI: Nucl.Phys.A 876 (2012) STAR: Phys.Lett.B 827 (2022) E895: Phys.Rev.Lett. 84 (2000)

Deuteron data by I.Zhavoronkova

- Both deuteron and proton data from BM@N agree with STAR measurements
- Higher directed flow of proton in BM@N and STAR data suggests more hard equation of state

v_1 of protons and deuterons as a function of p_T

Scaled v_1 of protons and deuterons as a function of scaled p_T/A

BES program in the BM@N experiment

• The're no available measurements of v_n in the region $\sqrt{s_{NN}}=2.5-3.0$ GeV

The upcoming BM@N BES aims to cover this energy range

BACKUP

- All the methods used for performance study were carried out using QnTools framework: <u>https://github.com/HeavyIonAnalysis/QnTools</u> (well documented and well-tested)
- Methods for flow measurements in fixed-target experiments were tested on experimental data from NA61/SHINE, HADES and ALICE
- Tested and implemented in MPD root

Масштабирование dv₁/dy с энергией столкновения и размером системы

- После корректировки зависимости от времени пролета (y_{beam}) dv₁/dy' не зависит от размера сталкивающихся ядер и энергии столкновения, а зависит только от относительного прицельного параметра (/ A^{1/3})
- Замена центральности на /А^{1/3} улучшает масштабирование dv₁/dy' в центральных столкновениях

dv_1/dy scaling with collision energy and system size

- Scaling with collision energy is observed in model and experimental data
- Scaling with system size is observed in model and experimental data
- We can compare the results with HIC-data from other experiments(e.g. STAR-FXT Au+Au

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff T π : π -; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff T-: all negative; 1.0< η <2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff²³

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Azimuthal asymmetry of the BM@N acceptance

25

SP R1: DCMQGCM-SMM Xe+Cs@4A GeV

SP gives unbiased estimation of v_n (root-mean-square) EP gives biased estimation (somewhere between mean and RMS)

Using the additional sub-events from tracking provides a robust combination to calculate resolution ²⁶

Models

- Cascade mode fail to reproduce flow signal
- Mean-Field models reproduce flow signal up to 4th harmonic

Simulation datasample

- Xe+Cs nuclei collisions
- DCMQGSM-SMM model (realistic yields of spectator fragments), describes flow poorly
- JAM model (realistic flow signal)
- Geant4 transport code (important for simulation of hadronic showers in the forward calorimeter)
- Realistic reconstruction

	2A GeV	3A GeV	4A GeV
DCMQGSM-SMM	6M	6M	2M
JAM MD2	3M	3M	5M

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_{n}^{\ \text{EP}}$ is the event plane angle

Additional subevents from tracks not pointing at FHCal: Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff T π : π -; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff T-: all negative; 1.0< η <2.0; 0.1 < p_T < 0.5 GeV/c; w=1/eff²⁹

Flow methods for v_n calculation

Tested in HADES:

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Resolution is lower for higher energies due to lower v_1

Directed and elliptic flow in Xe+Cs (JAM)

Good agreement between reconstructed and pure model data for all three energies

R1: BM@N Run8 DATA: Xe+Cs@3.8A GeV

T-: all negatively charged particles with:

- 1.5 < η < 4
- p_τ > 0.2 GeV/c

T+: all positively charged particles with:

- 2.0 < η < 3
- p_τ > 0.2 GeV/c

Results for v_1 and v_2 are in progress

Corrections due to non-uniform acceptance

Residual effect due to non-uniform acceptance is 2%

The HADES at SIS-18 accelerator (GSI, Germany)

2012: Au+Au @ E_{lab} =1.23A GeV ($\sqrt{s_{NN}}$ =2.4 GeV) 2019: Ag+Ag @ E_{lab} =1.23A GeV ($\sqrt{s_{NN}}$ =2.4 GeV) @ E_{lab} =1.58A GeV ($\sqrt{s_{NN}}$ =2.6 GeV)

Reaction plane estimation using the deflection of projectile spectors

Systematic error table

	Неоднородность аксептанса	Непотоковые корреляции	Общая
Аu+Au при Е _{kin} =1.23 <i>A</i> ГэВ	2%	2%	3%
Ад+Ад при Е _{kin} =1.23 <i>А</i> ГэВ	2%	5%	5%
Ад+Ад при Е _{kin} =1.58 <i>А</i> ГэВ	2%	5%	5%
Коллективные потоки в столкновения Au+Au E_{kin}=1.23A ГэВ

Коллективные потоки в Au+Au@1.23А ГэВ измерены до 6 гармоники

- Восстановлена трехмерная картина вылета частиц
- Опередена систематическая погрешность, связанная с методикой оценки плоскости реакции

Table for the systematic uncertainties

	Неоднородность аксептанса	Непотоковые корреляции	Общая
Хе+Сѕ при Е _{kin} =2А ГэВ	3%	4%	5%
Хе+Сѕ при Е _{кіп} =3А ГэВ	3%	4%	5%
Хе+Сѕ при Е _{кіп} =4А ГэВ	3%	4%	5%

Для более высоких энергий R_1 ниже, поскольку ниже v_1

Неодноросдность азимутального аксептанса HADES

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

40

Сравнение методов измерения v_1 в эксперименте HADES

Систематическая ошибка из-за метода измерениях v₁ менее 5% в среднецентральных столкновениях Au+Au

Роль анизотропных потоков в открытии КГМ

Сравнение гидродинамических расчетов для v_n с экспериментальными измерениями показывает самую низкую в природе η/s

Влияние спектаторов на анизотропные потоки

v_n протонов в столкновениях Au+Au при энергиях 2-8 АГэВ и уравнение состояния (EOS) симметричной ядерной материи

v₁ предполагает *К_{mn}*≈210 МэВ

v₂ предполагает К_{mn}≈300 МэВ

Разница в значениях несжимаемости ядерной материи *К_{mn}* может быть объяснена вкладом непотоковых корреляций в измерения v_n эксперимента E895 (AGS)

Влияние азимутального аксептанса

Уравнение состояния сильновзаимодействующей материи

Давление для постоянной температуры:

$$P = n_B^2 \frac{\partial (E/A)}{\partial n_B}$$

где Е/А — энергия на нуклон, n_в — число барионов. Энергия связи Е/А определяется как:

$$E/A = E_A(n_B) + E_{sym}(n_B) \frac{(n_p - n_n)^2}{n_B^2}$$

где Е_А — энергия симметричной материи, Е_{sym} — энергия симметрии.

Уравнение состояния ядерной материи может быть охарактеризован коэффициентом несжимаемости:

$$K = 9n_B^2 \frac{\partial^2 (E/A)}{\partial n_B^2}$$

Систематические ошибки для данных Аи+Аи 1.23А ГэВ

Eur.Phys.J.A 59 (2023) 4, 80

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=2.4~{\rm GeV}$

HADES collaboration

J. Adamczewski-Musch⁵, O. Arnold^{10,9}, C. Behnke⁸, A. Belounnas¹³, J.C. Berger-Chen^{10,9}, A. Blanco², C. Blume⁸, M. Böhmer¹⁰, P. Bordalo², L. Chlad¹⁴, I. Ciepal³, C. Deveaux¹¹, J. Dreyer⁷, E. Epple^{10,9}, L. Fabbietti^{10,9}, P. Filip¹, P. Fonte^{2,a}, C. Franco², J. Friese¹⁰, I. Fröhlich⁸, T. Galatyuk^{6,5}, J.A. Garzón¹⁵, R. Gernhäuser¹⁰, R. Greifenhagen^{7,b,†}, M. Gumberidze^{5,6}, S. Harabasz^{6,4}, T. Heinz⁵, T. Hennino¹³, S. Hlavac¹, C. Höhne^{11,5}, R. Holzmann⁵, B. Kämpfer^{7,b}, B. Kardan⁸, I. Koenig⁵, W. Koenig⁵, M. Kohls⁸, B.W. Kolb⁵, G. Korcyl⁴, G. Kornakov⁶, F. Kornas⁶, R. Kotte⁷, A. Kugler¹⁴, T. Kunz¹⁰, R. Lalik⁴, K. Lapidus^{10,9}, L. Lopes², M. Lorenz⁸, T. Mahmoud¹¹, L. Maier¹⁰, A. Malige⁴, A. Mangiarotti², J. Markert⁵, T. Matulewicz¹⁶, S. Maurus¹⁰, V. Metag¹¹, J. Michel⁸, D.M. Mihaylov^{10,9}, C. Müntz⁸, R. Münzer^{10,9}, L. Naumann⁷, K. Nowakowski⁴, Y. Parpottas¹⁸, V. Pechenov⁵, O. Pechenova⁵, K. Piasecki¹⁶, J. Pietraszko⁵, W. Przygoda⁴, K. Pysz³, S. Ramos², B. Ramstein¹³, N. Rathod⁴, P. Rodriguez-Ramos¹⁴, P. Rosier¹³, A. Rost⁶, A. Rustamov⁵, P. Salabura⁴, T. Scheib⁸, H. Schuldes⁸, E. Schwab⁵, F. Scozzi^{6,13}, F. Seck⁶, P. Sellheim⁸, I. Selyuzhenkov⁵, J. Siebenson¹⁰. L. Silva², U. Singh⁴, J. Smyrski⁴, Yu.G. Sobolev¹⁴, S. Spataro¹⁷, S. Spies⁸, H. Ströbele⁸, J. Stroth^{8,5}, C. Sturm⁵, O. Svoboda¹⁴, M. Szala⁸, P. Tlusty¹⁴, M. Traxler⁵, H. Tsertos¹², V. Wagner¹⁴, C. Wendisch⁵, M.G. Wiebusch⁵, J. Wirth^{10,9}, D. Wójcik¹⁶, P. Zumbruch⁵

The main contribution to the global systematic uncertainty arises from the event-plane resolution. This is mainly caused by so-called "non-flow" correlations which can distort the event-plane determination. The magnitude of these systematic effects is evaluated using the three-sub-event method, i.e. by determining the event-plane resolution for combinations of different subevents separated in rapidity. It is found to be below 5 % for the centralities 10 - 40 % [36].

36. M. Mamaev, O. Golosov, and I. Selyuzhenkov (HADES), Phys. Part. Nucl. **53**, 277 (2022).

Directed flow of protons and EOS of symmetric matter

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Both STAR and BM@N results for directed flow prefer stiff EOS

MPD in Fixed-Target Mode (FXT) vs BM@N

Please see Pater Parfenov talk at Nucleus-2024 – 02/07//2024

Исследование фазовой диаграммы КХД материи

Высокая барионная плотность: столкновения нейтронных звезд

2005 – Открытие Кварк-Глюонной Материи (КГМ) в столкновениях Au+Au при энергии $\sqrt{s_{NN}} = 200$ ГэВ в экспериментах на коллайдере RHIC (БНЛ). КГМ - сильно взаимодействующую жидкость с очень малой вязкостью

2010 - Поиск сигналов деконфайнмента, фазового перехода первого рода и критической точки КХД материи - основа для программ сканирования по энергии столкновения ядер в современных экспериментах на ускорителях: RHIC, SPS, Nuclotron, SIS18

Непотоковые корреляции

Корреляции не относящиеся к изначальному коллективному движению частиц называют непотоковыми:

- Фемтоскопические корреляции
- Закон сохранения импульса
- Корреляция продуктов распада
- Корреляции возникающие в материале детектора (адронный ливень, магнитное поле)

Основной способ подавить непотоковые корреляции — внести разделение по (псевдо-) быстроте между Q_n-векторами

Неодноросдность азимутального аксептанса HADES

$$u_{1} = (x_{1}, y_{1}) \quad Q_{1} = (X_{1}, Y_{1})$$
$$v_{1} = \frac{\langle u_{1}Q_{1} \rangle}{R_{1}} = 2 \frac{\langle x_{1}X_{1} \rangle}{R_{1}^{X}} = 2 \frac{\langle y_{1}Y_{1} \rangle}{R_{1}^{Y}}$$
$$R_{1}^{X} = \frac{\sqrt{\langle X^{a}X^{b} \rangle \langle X^{a}X^{c} \rangle}}{\sqrt{\langle X^{b}X^{c} \rangle}}$$

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

52

Векторы потока u_n и Q

Из импульса каждой частицы определяется единичный вектор и .:

 $\vec{u}_n = (\cos n\varphi, \sin n\varphi)$

где ф — азимутальный угол импульса

Сумма по группе частиц в одном событии даёт оценку угла плоскости реакции в событии:

$$\vec{Q}_n = \frac{\sum_{k=1}^M w_k u_n^k}{C} = \frac{|Q|}{C} (\cos n \Psi_n^{EP} \sin n \Psi_n^{EP})$$

 Ψ_n^{EP} — угол плоскости симметрии (оценка угла плоскости реакции)

и₁-вектора, дающие в сумме Q₁-вектор 1.0 0.5 U, > 0.0 -1.0-0.5 0.5 -1.00.0 1.0 x **Projectile Spectators** Participants Forward Wall Target Spectators Reaction Plane

53

-0.5

Разрешение плоскости симметрии

$$v_1=rac{\langle u_1Q_1^{F1}
angle}{R_1^{F1}}$$
 $v_2=rac{\langle u_2Q_1^{F1}Q_1^{F3}
angle}{R_1^{F1}R_1^{F3}}$
де R₁ — разрешение плоскости симметрии

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Метод случайных подсобытий:

Методика измерения азимутальных потоков

- Направленный поток достигает максимума в кинематической области спектаторов
- Для восстановления плоскости симметрии используются спектаторы, чтобы подавить вклад непотоковых корреляций

Непотоковые корреляции

Существуют корреляции между частицами, не связанные с плоскостью реакции. Эти корреляции называются «непотоковыми»

Среди источников корреляций, не связанных с потоком:

- сохранение полного (поперечного) импульса при столкновении;
- распады резонансов в результате слабого взаимодействия
- корреляции ближнего действия (фемтоскопия, распад фрагментов ядер)

Эффекты детектора также могут вносить коррелированную ошибку в измерения потока:

- Разделение траектории одной частицы в результате реконструкции
- Слияние траекторий двух частиц в результате реконструкции
- Сигналы от пролёта одной и той же частицы в соседних модулях сегментированных детекторов

Как правило "непотоковые" корреляции оказывают существенное влияние только на частицы с близкими импульсами, их можно также подавить, увеличив интервал быстроты между частицами.

Векторы потока u_n и Q_n

Из импульса каждой частицы определяется единичный вектор u_n:

 $\vec{u}_n = (\cos n\varphi, \sin n\varphi)$

где ф — азимутальный угол импульса

Сумма по группе частиц в одном событии даёт оценку угла плоскости реакции в событии:

$$\vec{Q}_n = \frac{\sum_{k=1}^M w_k u_n^k}{C} = \frac{|Q|}{C} (\cos n \Psi_n^{EP} \sin n \Psi_n^{EP})$$

Ψ_n^{EP} — угол плоскости симметрии (оценка угла плоскости реакции)

- Плоскость симметрии определятся при помощи спектаторов, которые отклоняются в плоскость реакции
 - Большое разделение по быстроте позволят минимизировать непотоковые корреляции

Влияние азимутального аксептанса на v_n

Коррекция азимутальной неоднородности аксептанса

Оригинальный программный код разработанный для коллайдерных экспериментов был адаптирован для экспериментов с фиксированной мишенью: https://github.com/mam-mih-val/qntools_macros

Метод плоскости события

$$\Psi_n^{EP} = \arctan \frac{Q_n^y}{Q_n^x} \quad v_n = \frac{\langle \cos n(\phi - \Psi_n^{EP}) \rangle}{R_n}$$
$$\langle v_n \rangle < v_n < \sqrt{\langle v_n^2 \rangle}$$

Phys. Rev. C. - 2001. - T. 64. - C. 054901

$$R_n = \sqrt{\langle \cos n(\Psi_n^A - \Psi_n^B) \rangle}$$

Ψ_n^A и Ψ_n^B — оценка по двум
 группам частиц (часто частицы
 разделяются в группы случайным
 образом)

Метод подвержен вкладу непотоковых корреляций

Метод скалярного произведения

Метод скалярного произведения:

$$v_n = \frac{\langle \vec{u}_n \vec{Q}_n \rangle}{R_n}$$
$$v_n \to \sqrt{\langle v_n^2 \rangle}$$

Phys. Rev. C. - 2001. - T. 64. - C. 054901

Метод трех подсобытий:

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Метод даёт 3 оценки v_n, что позволяет оценивать вклад непотоковых корреляций

Эксперимент HADES на ускорителе SIS-18 (ГСИ, Дармштадт)

Векторы потока

W3: 2.68 < n < 3.35

Ошибка из-за азимутального неоднородности акцетанса < 2%

Методы вычисления v

Метод скалярного произведения (SP) $v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$ $v_1=rac{\langle u_1Q_1^{F1}
angle}{B_1^{F1}}$.

Где R₁ — разрешение плоскости симметрии

 $R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$

Обозначение "F2(F1,F3)" раскрывается как R₁ вычисленный следующим образом:

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Сравнение методов измерения v₁ в эксперименте HADES

Систематическая ошибка из-за метода измерениях v₁ менее 5% в среднецентральных столкновениях Au+Au

Nuclei, 2022, 53(2), pp. 277–281 M.Mamaev et al. Journal of Physics: CS, 2020, 1690(1), 012122 65

Коллективные потоки в столкновениях Au+Au при E_{kin}=1.23*A* ГэВ

Первые детальные измерения коллективных потоков v_n (до 6 гармоники) в столкновениях Au+Au при энергии 1.23 АГэВ ($\sqrt{s_{NN}}$ = 2.4 ГэВ) Вклад автора в работу: сравнение методов измерения v_n и оценка вклада непотоковых корреляций Eur. Phys. J. A (2023) 59:80 https://doi.org/10.1140/epja/s10050-023-00936-6 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Proton, deuteron and triton flow measurements in Au+Au collisions at $\sqrt{s_{NN}} = 2.4 \text{ GeV}$

HADES collaboration

J. Adamczewski-Musch⁵, O. Arnold^{9,10}, C. Behnke⁸, A. Belounnas¹³, J. C. Berger-Chen^{9,10}, A. Blanco², C. Blume⁸, M. Böhmer¹⁰, P. Bordalo², L. Chlad¹⁴, I. Ciepal³, C. Deveaux¹¹, J. Dreyer⁷, E. Epple^{9,10}, L. Fabbietti^{9,10}, P. Filip¹, P. Fonte^{2,b}, C. Franco², J. Friese¹⁰, I. Fröhlich⁸, T. Galatyuk^{5,6}, J. A. Garzón¹⁵, R. Gernhäuser¹⁰, R. Greifenhagen^{7,c†}, M. Gumberidze^{5,6}, S. Harabasz^{4,6}, T. Heinz⁵, T. Hennino¹³, S. Hlavac¹, C. Höhne^{5,11}, R. Holzmann⁵, B. Kämpfer^{7,c}, B. Kardan⁸, I. Koenig⁵, W. Koenig⁵, M. Kohls⁸, B. W. Kolb⁵, G. Korcyl⁴, G. Kornakov⁶, F. Kornas⁶, R. Kotte⁷, A. Kugler¹⁴, T. Kunz¹⁰, R. Lalik⁴, K. Lapidus^{9,10}, L. Lopes², M. Lorenz⁸, T. Mahmoud¹¹, L. Maier¹⁰, A. Malige⁴, A. Mangiarotti², J. Markert⁵, T. Matulewicz¹⁶, S. Maurus¹⁰, V. Metag¹¹, J. Michel⁸, D. M. Mihaylov^{9,10}, C. Müntz⁸, R. Münzer^{9,10}, L. Naumann⁷, K. Nowakowski⁴, Y. Parpottas¹⁸, V. Pechenov⁵, O. Pechenova⁵, K. Piasecki¹⁶, J. Pietraszko⁵, W. Przygoda⁴, K. Pysz³, S. Ramos², B. Ramstein¹³, N. Rathod⁴, P. Rodriguez-Ramos¹⁴, P. Rosier¹³, A. Rost⁶, A. Rustamov⁵, P. Salabura⁴, T. Scheib⁸, H. Schuldes⁸, E. Schwab⁵, F. Scozzi^{6,13}, F. Seck⁶, P. Sellheim⁸, I. Selyuzhenkov⁵, J. Siebenson¹⁰, L. Silva², U. Singh⁴, J. Smyrski⁴, Yu. G. Sobolev¹⁴, S. Spataro¹⁷, S. Spies⁸, H. Ströbel⁸, J. Stroth^{5,8}, C. Sturm⁵, O. Svoboda¹⁴, M. Szala⁸, P. Tlusty¹⁴, M. Traxler⁵, H. Tsertos¹², V. Wagner¹⁴, C. Wendisch⁵, M. G. Wiebusch⁵, J. Wirth^{9,10}, D. Wójcik¹⁶, P. Zumbruch⁵ The main contribution to the global systematic uncertainty arises from the event plane resolution. This is mainly caused by so-called "non-flow" correlations which can distort the event plane determination. The magnitude of these systematic effects is evaluated using the three-sub-event method, i.e. by determining the event plane resolution for combinations of different subevents separated in rapidity. It is found to be below 5 % for the centralities 10 - 40 % [36].

- 35. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, *GEANT Detector Description and Simulation Tool* (1994).
- 36. M. Mamaev, O. Golosov, and I. Selyuzhenkov (HADES), Phys. Part. Nucl. 53, 277 (2022).
- A. Andronic *et al.* (FOPI), Phys. Rev. C64, 041604 (2001).

v₁ протонов в столкновениях Au+Au и Ag+Ag

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

- Наблюдается похожая зависимость v₁ (dv₁/dy) протонов от быстроты (y_{cm}), поперечного импульса (p_T) и центральности для столкновений Ag+Ag и Au+Au при E_{kin}=1.23A ГэВ
- Модель JAM-MF (с импульсно зависимым среднем полем) довольно хорошо описывает зависимость v₁ от быстроты

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622-637

Сравнение результатов с существующими мировыми данными

Измеренные значения dv₁/dy протонов хорошо согласуются с данными других экспериментов

Масштабирование dv_1/dy с энергией и размером системы

Более длинное время пролета Более короткое время пролета

Во время пролета двух ядер t_{pass} :

- Протоны в области перекрытия смешиваются с холодной спектаторной материей

dv₁/dy|_{y=0} пропорционален времени пролета t_{pass}=2R/sinh(y_{beam}) ⇔ ожидается масштабирование с y_{beam}

Масштабирование dv_1/dy с энергией и размером системы

Более длинное время пролета Более короткое время пролета

Во время пролета двух ядер:

- Протоны в области перекрытия смешиваются с холодной спектаторной материей

v₁ отражает изначальную асимметрию области перекрытия ⇔ ожидается похожий v₁ для одного относительного прицельного параметра b/R

$$b_L/R_L = b_s/R_s$$

JAM-MF: масштабирование v_1 с энергией и размером системы

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622–637

Наблюдается схожее масштабирование в модели JAM-MF
Масштабирование v₁ с энергией и геометрией столкновения

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

- Масштабированный v₁ не зависит от энергии столкновения и размера системы
 - Форма зависимости v₁ от p_т не меняется с энергией и размером системы

Масштабирование dv₁/dy с энергией и размером системы

Mamaev M. Physics of Particles and Nuclei Letters. — 2024. — T. 21, № 4. — C. 661—663. Mamaev M. Physics of Particles and Nuclei. — 2024. — T. 55, № 4. — C. 832—835.

 После коррекции на время пролета двух ядер (y_{beam}) dv₁/dy' не зависит от размера сталкиваемых ядер и энергии столкновения и зависит только от относительное прицельного параметра (/ A^{1/3})

Q-вектора из FHCal и треков заряженных частиц

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622-637

3 вектора из FHCal: F1: 4.4 < η < 5.5; w=E_{kin} F2: 3.9 < η < 4.4; w=E_{kin} F3: 3.1 < η < 3.9; w=E_{kin} Дополнительные подсобытия из рожденных частиц:

Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff **Tπ:** π-; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff **T-:** all negative; 1.0<η<2.0; 0.1 < p_T < 0.5 GeV/c;

75

Скалярное произведение: зависимость разрешения плоскости событий R_1 от центральности (модельные данные Xe+Cs(I) E_{kin} = 3.8 АГэВ)

Mamaev M. Phys. Part. Nucl. Lett. — 2023. — T. 20, № 5. — C. 1205—1208.

Использование дополнительных подсобытий из треков заряженных частиц даёт согласованные значения для разрешения плоскости симметрии R₁

77

Оценка эффективности эксперимента BM@N для измерения направленного и эллиптического потоков в столкновениях Xe+CsI

Хорошее согласие между реконструированными и модельными значениями V_n

Heavy ion collisions

In 2005 4 experiments (STAR, PHENIX, BRAHMS, PHOBOS) at RHIC announced discovery of quark-gluon matter (QGM) with properties of ideal fluid in Au+Au at the energy of $\sqrt{s_{_{NN}}}$ =200 GeV In 2010 experiments (ALICE, ATLAS, CMS) at LHC confirmed the observing of QGM in Pb+Pb at $\sqrt{s_{_{NN}}}$ =2.76 TeV

Smooth transition (crossover) to partonic degrees of freedom at zero baryon densities

Anisotropic flow at RHIC and LHC

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

- The overlap region eccentricity ε_n (and corresponding fluctuations) causes azimuthal anisotropy in momentum space v_n with viscous modulations η/s
- For v_2 and v_3 : $v_n \sim k_n \varepsilon_n$
- Anisotropic flow at RHIC and LHC are well-described by viscous hydrodynamics with η/s close to the predicted minimum η/s>1/4π

HIC-experiments at the high-baryon density region

HIC experiments where high-baryon density can be achieved:

Existing:

BM@N/NICA — 2.4-3.3 GeV HADES/SIS18 — 2.4-2.55 GeV STAR/RHIC — 3-200 GeV

Future:

MPD/NICA — 4-11 GeV (2025) CEE/HIAF — 2.1-4.4 GeV (2026) CBM/FAIR 2.4-4.9 GeV (2029)

Anisotropic flow in HIC at high-baryon density

 t_{η}

At the energies of BM@N anisotropic flow is heavily influenced by:

- 1. Time of expansion of the overlap region:
- 2. Passing time of colliding nuclei:

$$t_{exp} = R/c_s, c_s = \sqrt{dp/d\varepsilon}$$

 $p_{ass} = 2R/\gamma_{beam}\beta_{beam}$ 82

Q-vectors from FHCal charged particle trajectories

Mamaev, M., Taranenko, A. Particles, 2023, 6(2), pp. 622-637

3 vectors from FHCal: F1: 4.4 < η < 5.5; w=E_{kin} F2: 3.9 < η < 4.4; w=E_{kin} F3: 3.1 < η < 3.9; w=E_{kin} Additional subevents from charged particles tracks: Tp: p; 0.4<y<0.6; 0.2 < p_T < 2 GeV/c; w=1/eff T π : π -; 0.2<y<0.8; 0.1 < p_T < 0.5 GeV/c; w=1/eff T-: all negative; 1.0< η <2.0; 0.1 < p_T < 0.5 GeV/c;

R_1 vs centrality for Xe+Cs(I) at E_{kin} =4A GeV: MC-simulation

Mamaev M. Phys. Part. Nucl. Lett. — 2023. — T. 20, № 5. — C. 1205—1208.

Использование дополнительных подсобытий из треков заряженных частиц даёт согласованные значения для разрешения плоскости симметрии R₁