Chiral and deconfinement thermal transitions at finite quark spin density in lattice QCD

 $\underline{\operatorname{Artem}}\,\underline{\operatorname{Roenko}}^1,$

in collaboration with

V. Braguta, M. Chernodub,

¹ Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics roenko@theor.jinr.ru

International Workshop "Infinite and Finite Nuclear Matter" (INFINUM-2025), Dubna, JINR, 12 – 16 May 2025 based on arXiv:2503.18636 [hep-lat]

> JOINT INSTITUTE FOR NUCLEAR DESEARCH

Phase transitions in QCD at finite spin density

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ののの

Introduction

- In non-central heavy ion collisions the droplets of QGP with angular momentum are created.
- An interplay between rotation, vorticity, and spins of quarks lead to series of effects in HIC.
- The rotation occurs with relativistic velocities. \Rightarrow Spin alignment of created particles.

2/16

Spin potential

We introduce the finite spin density of quarks by analogy with the finite quark density

• Quark chemical potential, $\mu_q \iff$ quark number density, $\bar{\psi}\gamma^0\psi$, An additional term in the Dirac Lagrangian:

$$\delta_N \mathcal{L}_q = \mu_q \, \bar{\psi} \gamma^0 \psi \,, \tag{1}$$

• Spin potential, $\mu_{\Sigma} \iff \text{density of quark spin}, \quad \bar{\psi}\gamma^0 \Sigma^{12} \psi,$ An additional term in the Dirac Lagrangian:

$$\delta_{\Sigma} \mathcal{L}_q = \mu_{\Sigma} \,\bar{\psi} \gamma^0 \Sigma^{12} \psi \,. \tag{2}$$

• In general form (we use canonical definition of spin tensor),

$$\delta_{\Sigma} \mathcal{L}_q = \mu_{\alpha,\mu\nu} \overline{\psi} \mathcal{S}^{\alpha,\mu\nu} \psi, \qquad \text{where} \quad \mathcal{S}^{\alpha,\mu\nu} = \frac{1}{2} \left\{ \gamma^{\alpha}, \Sigma^{\mu\nu} \right\}, \qquad \Sigma^{\mu\nu} = \frac{i}{4} \left[\gamma^{\mu}, \gamma^{\nu} \right], \tag{3}$$

but we consider the spins of quarks polarized along the z axis, $\mu_{\alpha,\mu\nu} = \frac{\mu_{\Sigma}}{2} \delta_{\alpha 0} (\delta_{\mu 1} \delta_{\nu 2} - \delta_{\nu 1} \delta_{\mu 2}).$ • Spin potential expresses a tendency to favor one spin state over the other, $\mu_{\Sigma} = \delta E_{\uparrow} - \delta E_{\downarrow}.$

QCD on the lattice

Our aim is to study QCD phase diagram for finite spin density, μ_{Σ} , on the lattice. Lattice simulation is a powerful method to study strong-interacting systems:

• Based on the *path-integral* representation of the partition function (Euclidean action is used):

$$\begin{aligned} \mathcal{Z} &= \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] \; e^{-S_G(U) - S_F(\psi, \bar{\psi}, U)} = \int \mathcal{D}[U] \; e^{-S_G(U)} \prod_f \det[M^{(f)}(\psi, \bar{\psi}, U)], \\ \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{O}(\psi, \bar{\psi}, U) \; e^{-S_G(U)} \prod_f \det[M^{(f)}(\psi, \bar{\psi}, U)] \approx \frac{1}{N_{\text{conf}}} \sum_{\substack{i=1\\P[U_i] \propto e^{-S}}}^{N_{\text{conf}}} \mathcal{O}[\text{conf}_i]. \end{aligned}$$

- The spacetime is discretized on the hypercubic Euclidean lattice with finite spacing a.
- The integrals are computed using Monte-Carlo algorithms. HPC is needed.
- The results should be finite in the continuum limit $a \to 0$.
- Statistical and systematic uncertainties are under control.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のの⊙

QCD on the lattice

Our aim is to study QCD phase diagram for finite spin density, μ_{Σ} , on the lattice. Lattice simulation is a powerful method to study strong-interacting systems:

• Based on the *path-integral* representation of the partition function (Euclidean action is used):

$$\begin{aligned} \mathcal{Z} &= \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] \; e^{-S_G(U) - S_F(\psi, \bar{\psi}, U)} = \int \mathcal{D}[U] \; e^{-S_G(U)} \prod_f \det[M^{(f)}(\psi, \bar{\psi}, U)], \\ \mathcal{O}\rangle &= \frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{O}(\psi, \bar{\psi}, U) \; e^{-S_G(U)} \prod_f \det[M^{(f)}(\psi, \bar{\psi}, U)] \approx \frac{1}{N_{\text{conf}}} \sum_{\substack{i=1\\P[U_i] \propto e^{-S}}}^{N_{\text{conf}}} \mathcal{O}[\text{conf}_i]. \end{aligned}$$

- The spacetime is discretized on the hypercubic Euclidean lattice with finite spacing *a*.
- The integrals are computed using Monte-Carlo algorithms. HPC is needed.
- The results should be finite in the continuum limit $a \to 0$.
- Statistical and systematic uncertainties are under control.

In the imaginary time formalism, the quark spin potential becomes an imaginary quantity after the Wick rotation, similarly to the baryon chemical potential,

$$\mu_{\Sigma} = i\mu_{\Sigma}^{\mathrm{I}} \,. \tag{4}$$

We aim to find the curvature κ_{Σ} of the deconfinement $(\ell = L)$ and chiral $(\ell = \psi)$ phase transitions:

$$\frac{T_c^\ell(\mu_{\Sigma}^{\mathrm{I}})}{T_c^\ell(0)} = 1 + \kappa_{\Sigma}^\ell \left(\frac{\mu_{\Sigma}^{\mathrm{I}}}{T_c(0)}\right)^2 + \dots, \qquad [\ell = L, \psi],$$

$$(5)$$

and after analytic continuation we get.

$$\frac{T_c^{\ell}(\mu_{\Sigma})}{T_c(0)} = 1 - \kappa_{\Sigma}^{\ell} \left(\frac{\mu_{\Sigma}}{T_c(0)}\right)^2 + \dots, \qquad [\ell = L, \psi].$$

$$(6)$$

The spin curvature κ_{Σ} describes how the presence of small quark density affects the transitions in QCD.

Quark chemical potential

There are analogies with other "potentials" in QCD:

Quark chemical potential, μ_q

$$\delta_N \mathcal{L}_q = \mu_q \, \bar{\psi} \gamma^0 \psi \equiv \mu_q \, j^0 \, .$$

Usually the chemical potentials with respect to the conserved charges B, S, Q, \ldots are used instead:

• Baryon chemical potential

$$\mu_u = \mu_d \simeq \mu_B/3 = \mu_l, \quad \mu_s = 0$$
(simulation with imaginary $\mu_{l,I}$)
$$T_c \text{ decreases with real } \mu_B.$$

$$\kappa_a = 9\kappa_B = 0.12(2).$$

[C. Bonati et al., Phys. Rev. D 92, 054503 (2015), arXiv:1507.03571 [hep-lat]]

• Isospin chemical potential

 $\begin{array}{c} 180 \\ 175 \\$

 $\mu_u = \mu_I, \quad \mu_d = -\mu_I \quad \text{(no sign problem)} \Rightarrow T_c \text{ decreases with } \mu_I.$ [B. B. Brandt, G. Endrodi, and S. Schmalzbauer, Phys. Rev. D 97, 054514 (2018), arXiv:1712.08190 [hep-lat]]

Chiral chemical potential vs spin potential

Spin potential, μ

$$\delta_{\Sigma} \mathcal{L}_q = \mu_{\Sigma} \, \bar{\psi} \gamma^0 \Sigma^{12} \psi = \frac{1}{2} \mu_{\Sigma} \, \bar{\psi} \gamma^3 \gamma^5 \psi \iff \frac{1}{2} \mu_{\Sigma} \, j_A^3 \,.$$

(simulation with imaginary μ_{Σ}^{I})

At T = 0, the effects of $\mu_{\Sigma}^{\mathrm{I}} \leftrightarrow \mu_5 = \mu_{\Sigma}/2 \implies$ we expect that T_c increases with $\mu_{\Sigma}^{\mathrm{I}}$, or, T_c decreases with real μ_{Σ} The spin potential μ_{Σ} is somewhat similar to the angular velocity Ω of a uniformly rotating system:

Angular velocity, Ω

$$\begin{split} \delta_{\Omega} \mathcal{L}_{q} &= \Omega \,\bar{\psi} \Big[i \big(-x \partial_{y} + y \partial_{x} \big) + \gamma^{0} \Sigma^{12} \Big] \psi \,, \\ \delta_{\Omega} \mathcal{L}_{G} &= \frac{1}{2g^{2}} \Big[2r \Omega \left(F^{a}_{\hat{\varphi}r} F^{a}_{rt} + F^{a}_{\hat{\varphi}z} F^{a}_{zt} \right) - r^{2} \Omega^{2} \left(F^{a}_{\hat{\varphi}z} F^{a}_{\hat{\varphi}z} + F^{a}_{r\hat{\varphi}} F^{a}_{r\hat{\varphi}} \right) \Big] \,, \end{split}$$

(simulation with imaginary Ω_I)

 \triangleright At the rotation axis, x = y = 0, the local action of rotating system coincides with the system at finite spin density of quarks, $\Omega = \mu_{\Sigma}$.

 \triangleright The results for finite μ_{Σ} describes the shift of T_c at r = 0 for mixed phase in rotating QCD, if we expect the validity of "local thermalization".

 \triangleright The system at finite μ_{Σ} is homogeneous, unlike the case of rigid rotation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ののの

In continuum notations, the Euclidean quark action at the finite spin potential μ_{Σ} has the following form:

$$S_F = \int d^4x \ \bar{\psi} \Big[\gamma^x D_x + \gamma^y D_y + \gamma^z D_z + \gamma^\tau \big(D_\tau + i\mu_{\Sigma}^{\rm I} \Sigma^{12} \big) + m \Big] \psi \,. \tag{7}$$

- We use $N_f = 2$ clover-improved Wilson fermions (c_{SW} from one-loop) + RG-improved (Iwasaki) gauge action.
- The spin density term is exponentiated like chemical potential.
- Simulations are performed on lattices of the size 4×16^3 , 5×20^3 , 6×24^3 for meson mass ratios $m_{\rm PS}/m_{\rm V} = 0.60, \ldots, 0.85$.
- Due to competition between quarks and gluons in rotating system, the dependence of the results on the pion mass is of a particular interest.
- Temperature is $T = 1/(N_t a)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ののの

Observables

Deconfinement crossover

In QCD, the Polyakov loop is an approximate order parameter,

$$L = \frac{1}{N_s^3} \sum_{\vec{r}} \operatorname{Tr} \left[\prod_{\tau=0}^{N_t - 1} U_4(\vec{r}, \tau) \right],$$
(8)

In confinement $\langle L \rangle \approx 0$; in deconfinement $\langle L \rangle \neq 0$. $\langle L \rangle = e^{-F_Q/T}$ The deconfinement critical temperature is associated with the peak of the Polyakov loop susceptibility

$$\chi_L = \langle |L|^2 \rangle - \langle |L| \rangle^2 \,. \tag{9}$$

Chiral crossover

The chiral critical temperature is determined using the (disconnected) chiral susceptibility:

$$\chi_{\bar{\psi}\psi}^{\text{disc}} = \frac{N_f T}{V} \left[\left\langle \text{Tr}(M^{-1})^2 \right\rangle - \left\langle \text{Tr}(M^{-1}) \right\rangle^2 \right].$$
(10)

At low temperatures chiral symmetry is broken, $\langle \bar{\psi}\psi \rangle \neq 0$, and it is restored at high temperatures $\langle \bar{\psi}\psi \rangle = 0$.

Figure: The Polyakov loop as a function of temperature T for various values of the (imaginary) spin potential $\mu_{\Sigma}^{\rm I}$.

• An increasing imaginary spin potential leads to a decrease of the Polyakov loop at fixed temperature.

ELE DQQ

Polyakov loop susceptibility and chiral susceptibility

Figure: The susceptibilities of the Polyakov loop and the chiral condensate as a function of temperature.

- Pseudo-critical temperatures increases with an imaginary spin potential.
- The finite (imaginary) spin density softens the chiral phase transition.

Pseudo-critical temperatures: lattice spacing effects

Figure: Transition temperatures T_c of the deconfinement and chiral crossovers as a function of spin potential.

- Pseudo-critical temperatures increases with an imaginary spin potential.
- There is a weak dependence of the results on the lattice spacing *a*.

We fit the data by the quadratic function of the imaginary spin potential $\mu_{\Sigma}^{\rm I}$:

$$T_c^{\ell}(\mu_{\Sigma}^{\mathrm{I}}) = T_c^{\ell}(0) \left[1 + \kappa_{\Sigma}^{\ell} \left(\frac{\mu_{\Sigma}^{\mathrm{I}}}{T} \right)^2 \right].$$
(11)

In the limit of physical pion mass,

 $\kappa_{\Sigma}^{L \text{ (phys)}} = 0.0610(35), \qquad \kappa_{\Sigma}^{\psi \text{ (phys)}} = 0.0595(27), \qquad \text{at} \quad \left(\frac{m_{\text{PS}}}{m_{\text{V}}}\right)_{\text{phys}} = 0.175.$

We fit the data by the quadratic function of the imaginary spin potential $\mu_{\Sigma}^{\rm I}$:

$$T_c^{\ell}(\mu_{\Sigma}^{\mathrm{I}}) = T_c^{\ell}(0) \left[1 + \kappa_{\Sigma}^{\ell} \left(\frac{\mu_{\Sigma}^{\mathrm{I}}}{T} \right)^2 \right].$$
(11)

The dependence of the curvatures κ_{Σ}^{ℓ} $(\ell = L, \psi)$ on the pion mass ratio can be well described by

$$\kappa_{\Sigma}^{\ell}(\xi) = k_{\Sigma}^{\ell} + \gamma_{\Sigma}^{\ell} \xi^{2} , \qquad \xi = \frac{m_{\rm PS}}{m_{\rm V}} . \tag{12}$$

ELE SQO

Conclusions

- We performed first-principle numerical simulations in the lattice QCD with $N_f = 2$ dynamical quarks to determine the effect of a finite spin density of quarks on the deconfinement and chiral transitions.
- The quark spin density leads to a decrease of the temperatures of the chiral and deconfinement crossover. The result is qualitatively similar to finite baryon density.
- The curvatures, κ_{Σ}^{L} and κ_{Σ}^{ψ} , sufficiently depend on the pion mass. At physical pion mass point they are approximately the same within a small statistical error, $\kappa_{\Sigma}^{L} \simeq \kappa_{\Sigma}^{\psi} \simeq 0.06$. For baryon potential, curvature is of the same order, $\kappa_{q} = 0.12(2)$.
- The presence of the background spin potential does not lead to a splitting of the deconfinement and chiral transitions.
- The small magnitude of the curvatures implies that for the phenomenologically relevant values of the spin potential $\mu_{\Sigma} = 10 \text{ MeV}$, the deconfinement and chiral transition temperatures drop only by about 0.03%.
- It allows us to estimate the rotational effects for the on-axis critical temperature in rotating QCD within approximation of local thermalization.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ ●□■ のへぐ

Thank you for your attention!

The $N_f = 2$ clover-improved action for Wilson fermions is

$$S_F = \sum_{f=u,d} \sum_{x_1,x_2} \bar{\psi}^f(x_1) M_{x_1,x_2} \psi^f(x_2) , \qquad (13)$$

with the matrix

$$M_{x_{1},x_{2}} = \delta_{x_{1},x_{2}} - \kappa \bigg[\sum_{\mu=x,y,z} \left((1 - \gamma^{\mu}) T_{\mu+} + (1 + \gamma^{\mu}) T_{\mu-} \right) + (1 - \gamma^{\tau}) \exp \left(i a \mu_{\Sigma}^{\mathrm{I}} \Sigma^{12} \right) T_{\tau+} + (1 + \gamma^{\tau}) \exp \left(- i a \mu_{\Sigma}^{\mathrm{I}} \Sigma^{12} \right) T_{\tau-} \bigg] - \delta_{x_{1},x_{2}} c_{SW} \kappa \sum_{\mu < \nu} \sigma_{\mu\nu} F_{\mu\nu} , \qquad (14)$$

where $\kappa = 1/(8+2am)$, $T_{\mu+} = U_{\mu}(x_1)\delta_{x_1+\mu,x_2}$, $T_{\mu-} = U_{\mu}^{\dagger}(x_1)\delta_{x_1-\mu,x_2}$ and $F_{\mu\nu} = (\bar{U}_{\mu\nu} - \bar{U}_{\mu\nu}^{\dagger})/8i$. For the clover coefficient, we adopt the mean-field value $c_{SW} = (1 - W^{1\times 1})^{-3/4} = (1 - 0.8412/\beta)^{-3/4}$.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

We discretize the gluon part of the action using the renormalization-group improved (Iwasaki) lattice action, which is unaffected by spin density:

$$S_G = \beta \sum_x \left(c_0 \sum_{\mu < \nu} W_{\mu\nu}^{1\times 1} + c_1 \sum_{\mu \neq \nu} W_{\mu\nu}^{1\times 2} \right), \tag{15}$$

with the lattice couplings $\beta = 6/g^2$, $c_0 = 1 - 8c_1$, and $c_1 = -0.331$. The gauge field enters via

$$W_{\mu\nu}^{1\times 1}(x) = 1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} \overline{U}_{\mu\nu}(x),$$
 (16)

$$W_{\mu\nu}^{1\times 2}(x) = 1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} R_{\mu\nu}(x),$$
 (17)

where $\overline{U}_{\mu\nu}(x)$ denotes the clover-type average of four plaquettes and $R_{\mu\nu}(x)$ represents a rectangular loop.