Systematic study of anisotropic flow in relativistic heavy-ion collisions

Arkadiy Taranenko (MEPhi / JINR)

Infinite and Finite Nuclear Matter (INFINUM-2025), BLTP JINR Dubna, Russia, May 12-16, 2025

OUTLINE

1) Anisotropic flow: introduction

- 1) Flow and sQGP at RHIC/LHC?
- 2) Scaling properties of anisotropic flow
- 3) Flow results from Beam Energy Scans
- 4) Outlook for flow measurements at NICA

QGP may be produced at low energies; QGP is produced in high energy collisions

Anisotropic Flow in Heavy-Ion Collisions – 35 years

Plastic Ball, H.H. Gutbrod et al., Phys. Lett. B216, 267 (1989)

Diogene, M. Demoulins et al., Phys. Lett. B241, 476 (1990)

Azimuthal anisotropy of particles at HIC

$$\frac{dN}{d(\varphi - \Psi_{RP})} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) + \dots \right)$$

The sinus terms are skipped by symmetry arguments
 From the properties of Fourier's series one has

$$v_n = \left\langle \cos[n(\varphi - \Psi_{RP})] \right\rangle$$

□ Fourier coefficients V_n quantify anisotropic flow: v₁ is directed flow, v₂ is elliptic flow, v₃ is triangular flow, etc.

Term "flow" does not mean necessarily "hydro" flow – used only to emphasize the collective behavior of particles in event or multiparticle azimuthal correlation

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

Evolution of the system created in RHIC

Fireball is ~10⁻¹⁵ meters across and lives for 5*10⁻²³ seconds

200+200 nucleons in 10⁻²² seconds = 1000-30000 hadrons

R. Lacey Phys. Rev. C 98, 031901(R), 2018

Flow is acoustic

R. Lacey Phys. Rev. C 110 (2024) 3, L031901

$$\begin{aligned} v_n(p_T, cent) &= \mathcal{E}_n e^{-\frac{\beta}{RT} \left[n(n+\kappa p_T^2) \right]}, RT = \mathbb{R} \propto \left\langle \mathbb{N}_{d_{\mathbb{R}}} \right\rangle^{v_3} \end{aligned}$$
Same harmonic with variable centrality
For two harmonics at a fixed centrality
$$\begin{aligned} v_n(p_T, cent) &= \left(\frac{v_n(p_T, cent)}{\varepsilon_n} \right) e^{-\frac{\beta}{\mathbb{R}} \left[n(n+\kappa p_T^2) \right] \left[1 - \frac{\mathbb{R}}{\mathbb{R}} \right]}, \qquad \frac{v_n(p_T)}{\varepsilon_n} = \left(\frac{v_m(p_T)}{\varepsilon_m} \right)^{\frac{n}{m}} e^{\frac{\beta}{\mathbb{R}}(m-n)}, \\ v_n(p_T, cent) &= \varepsilon_n(cent) e^{-\frac{\beta}{\mathbb{R}} \left[n(n+\kappa p_T^2) \right]}, \quad n = 2, 3, \end{aligned}$$
where $\beta \propto \eta/s, \, \delta_f = \kappa p_T^2 \left[13, \, 35 \right], \text{ and } \mathbb{R} \propto \langle N_{chg} \rangle_{|\eta| \le 0.5}^{1/3}, \end{aligned}$

$$\begin{aligned} \frac{v_n(p_T, 0)}{\varepsilon_n(0)} e^{\frac{n\beta}{\mathbb{R}_0} [n+\kappa p_T^2]} &= \frac{v_n'(p_T, cent)}{\varepsilon_n'(cent)} e^{\frac{n\beta}{\mathbb{R}_0} [n+\kappa p_T^2] \left[\frac{\mathbb{R}_0}{\mathbb{R}^2} - 1 \right]}, \qquad \frac{v_2(p_T, cent)}{\varepsilon_2(cent)} e^{\frac{2n\beta}{\mathbb{R}_0}} &= \left(\frac{v_3(p_T, cent)}{\varepsilon_3(cent)} \right)^{\frac{2}{3}}, \end{aligned}$$

Flow is acoustic

R. Lacey Phys. Rev. C 98, 031901(R), 2018

STAR, Phys. Rev. Lett. 122 (2019) 172301

Flow is acoustic

R. Lacey Phys. Rev. C 110 (2024) 3, L031901

9

Scaling with integral flow of charged hadrons

for protons the strong radial flow "blueshifts" the entire flow signal to higher p_T : $p_T \sim p_T^{th} + mc\beta$

Beam-energy dependence of v_2 and v_3

Integrated v_2 and v_3 decrease with decreasing collision energy

Beam energy dependence of $\mathbf{V}_{\mathbf{n}}$

$$\beta'' = \ln\left(\frac{v_n^{1/n}}{v_2^{1/2}}\right) \langle N_{Ch} \rangle^{1/3} \propto -A\left(\frac{\eta}{s}\right)$$
 A: is constant

 V_n shows a monotonic increase with collision energy. The viscous coefficient, which encodes the transport coefficient (η/s), indicates a non-monotonic behavior as a function of collision energy.¹²

Beam-energy dependence of v_2 and v_3

Integrated v₂ and v₃ decrease with decreasing collision energy Similar shape of p_T dependence of normalized v₂ and v₃ for all centralities and collision energies

Anisotropic Flow at RHIC – partonic?

14

Elliptic flow from STAR BES program

Anisotropic Flow at RHIC BES

Li-Ke Liu (CCNU), STAR Collaboration, CPOD 2024

At high energies, data follows NCQ scaling, indicating partonic collectivity??? NCQ scaling for v2 breaks completely at 3.5 GeV and below,

16

NCQ scaling: hybrid models

- Hybrid models with QGP phase are used for BES energy range ($\sqrt{s_{NN}} = 7.7 200$ GeV), such as vHLLE+UrQMD and AMPT SM
- NCQ scaling holds for hybrid models well

NCQ scaling: cascade models

• Scaling holds up at 4.5 GeV in STAR data and pure string/hadronic cascade models (without partonic d.o.f.)

 KE_T/n_q scaling at 4.5 GeV might be accidental – more careful studies should be performed

Anisotropic Flow of particles and antiparticles

J.Phys.Conf.Ser. 1690 (2020) 1, 012128

Energy-dependent difference in elliptic and riangular flow between particles and antiparticles. This difference is increasing with decreasing collision energy and is almost identical for all baryons. It is larger for baryons than mesons. 19

Anisotropic flow in heavy-ion collisions at high baryon density

M. Abdallah et al. STAR, Phys. Lett. B 827, 137003 (2022)

Anisotropic flow at NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone $(t_{exp} = R/c_s, c_s = c\sqrt{dp/d\varepsilon})$
- II. The passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

Beam Energy Dependence of Directed Flow (v_1)

• Strong energy dependence of v_1 at $\sqrt{s_{NN}} = 2.4-7$ GeV

Beam Energy Dependence of Elliptic Flow (v_2)

• Strong energy dependence of v_2 at $\sqrt{s_{NN}} = 2.4-7$ GeV

Beam Energy Dependence of Elliptic Flow (v_2)

Li-Ke Liu (CCNU), STAR Collaboration, CPOD 2024

• Strong energy dependence of v_2 at $\sqrt{s_{NN}} = 2.4-7$ GeV

Scaling relations at SIS – scaling with passage time

U_{t0}

Anisotropic flow at Nuclotron / NICA: 2.5-3.5 GeV

Please see talk of Mikhail Mamaev

Summary and outlook

• NCQ scaling:

- Holds up for energies $\sqrt{s_{NN}} > 4$ GeV in both experimental data and models (hybrid and pure string/hadronic cascade models)
- Scaling at $\sqrt{s_{NN}} = 4.5$ GeV in the experimental data and pure string/hadronic cascade models can be accidental more thorough study should be performed

Scaling with passage time:

- Holds up for energies $\sqrt{s_{NN}} = 2 2.7$ GeV and breaks at $\sqrt{s_{NN}} \ge 3$ GeV
- Shows that at this energy range $v_2(\sqrt{s_{NN}})$ changes due to the change of the passage time t_{pass} of the spectators

Scaling relations provide a useful tool

to perform comparison between results from different experiments with different system size and beam energies

➤to constrain existing models

Flow is acoustic

R. Lacey Phys. Rev. C 110 (2024) 3, L031901

