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Motivation

Percolation gives the simplest example of continuous phase transition that
describes the change of global connectivity in a large random system.

Most of the results available are obtained for the in�nite system or in the
thermodynamic limit. Can one obtain �nite size results?

Critical bond percolation on 2D square lattice is related to the integrable six-vertex
model at the so-called Razumov-Stroganov combinatorial (stochastic) point known
for a peculiar combinatorial structure of model observables.

The idea is to use the toolbox of the theory of quantum integrable systems, like
Bethe ansatz and T-Q Baxter equation, to solve the �nite size systems .
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Percolation

Origins of percolation theory (Broadbent 1954, Broadbent and Hammersley 1957)

(Hammersly 1983, from B.D. Hughes, Random walks and random environments)
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Percolation

Bond percolation

Consider a graph (lattice).

Every bond of the graph is chosen to be either open (thick) with probability p or
closed (thin) with probability (1−p). Open bonds sharing a vertex belong to the
same connected cluster.

Is there a �percolating � cluster of open bonds connecting opposite sides of the
large lattice? What is the statistics of connected clusters?
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Percolation

Site percolation

Consider a graph (lattice).

Every site of the graph is chosen to be either open (black circle) with probability p
or closed (no circle) with probability (1−p). Sites sharing a bond belong to the
same connected cluster.

Is there a �percolating � cluster of open bonds connecting opposite sides of the
large lattice? What is the statistics of connected clusters?
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Percolation

Percolation at an in�nite lattice

At p = 0 the lattice is empty (no clusters). At p = 1 all sites belong to a single
in�nite cluster with probability one. Probability P∞ = P[there is an in�nite cluster]
is a non-decreasing function of p.

p=0.2 p=0.5 p=0.8

There is a critical point pc ∈ [0,1], such that P∞ = 0 when p < pc , and P∞ = 1
when p > pc . In the latter case on translation invariant d-dimensional lattices
there is exactly one in�nite cluster with probability one.
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Percolation

Percolation threshold

Percolation threshold for various lattices in various dimensions.
(Christensen, K. (2002). Percolation theory. )
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Percolation

Percolation as a continuous phase transition

Order parameter:
Strength θp = P[a site belongs to an in�nite cluster]

� p

Critical exponents, p→ pc :
α : the density of clusters νc = A+B(p−pc)+C(p−pc)

2+D±|p−pc |2−α + · · · ;
β : order parameter decay θp ∼ (p−pc)

β ;
γ : mean cluster size S ∼ |p−pc |−γ

ν: g(r) = P[two sites on the distance r are connected]≍ e
− |r |

ξ ,ξ ∼ |p−pc |−ν .
η : connectivity at the critical point p = pc , g(r) = |r |2−d−η

τ,σ : cluster size distribution ns ∼ s−τe
s
s
ξ , size cuto� sξ ∼ |p−pc |−1/σ

D : fractal dimension sξ ∼ ξD
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Percolation

Critical exponents:

Percolation critical exponents in dimensions d = 1;2;3;4;5;6 and in the Bethe lattice.
(Christensen, K. (2002). Percolation theory. )

The critical exponents vary with dimension d , when d is less than the upper critical

dc = 6.

As usual, when d ≥ dc , the mean �eld theory is exact.
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Percolation

Conformal invariance in 2D.

In two dimensions, d = 2, the critical percolation at p = pc is
believed to possess conformal invariance in continuous limit.
(Proved for site percolation on triangular lattice, Smirnov,
2009.) The conformal invariance suggests that the theory can
be described in terms of exactly solvable conformal �eld the-
ory, which makes all the correlation functions accessible, at
least potentially.

crossing probability

Consequences of conformal invariance for critical systems in �nite geometry are the
universal �nite size corrections to physical quantities.

Free energy on the cylinder of circumference L: fL = f∞− πc
6
L−2, where c is the

central charge of the theory. For critical percolation c = 0. The observables are
derivative of fL with respect to conjugated �elds, which can change the value of c.
Hence, we expect universal �nite size correction for percolation observables in a
�nite size system.

May 16, 2025 11 / 37



O(n) dense loop model

O(n) dense loop model on square lattice

A path passes through every bond exactly once, and two paths meet at every site
without crossing each other. Every closed loop is given weight n. We are
interested in the stochastic case n = 1.

To construct con�gurations by local operations we place a vertex at every lattice
site, in which two pairs of paths at four incident bonds are connected pairwise in
one of two possible ways

For n = 1 these vertices have equal weights.
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O(n) dense loop model

O(n) dense loop model on a cylinder

Consider a strip of the square lattice of even width L= 2N wrapped into a cylinder

Almost surely all paths are closed loops.

νc(L) � density of contractible loops

νnc(L) � density of non-contractible loops
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O(n) dense loop model

From O(1) dense loop model to critical percolation

Construct the 45◦ rotated square lattice with vertices in odd-odd and even-even faces.

The O(1) Gibbs measure on loops induces the critical (p = 1/2) measure on percolation
clusters by identi�cation .

Cluster densities coincide with the loop densities

νc (L) � density of clusters that do not wrap around the cylinder

νnc (L) � density of clusters wrapping around the cylinder
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Result: cluster and loop densities on the cylinder of even
circumference

Previous results

In�nite plane limit (Temperley, Lieb 1971, Zi�, Finch, Adamchik 1997)

νc(∞) =
3
√
3−5
2

Finite size corrections:

From conformal invariance for percolation on normally oriented lattice (Kleban P,
Zi� 1998): fL = f∞− πc

6 L−2,

ν(L) = νc (L)+νnc (L) = ν(∞)+
5

8
√
3L2

+O(1/L3)

For O(n) dense loop model (Brankov, Priezzhev, Rittenberg, Rogozhnikov 2014)
from Bethe ansatz solution of XXZ model and CFT (Alcaraz, Barber, Batchelor
1988; Quispel, Batchelor, 1987; Destri, De Vega 1989;von Gehlen, Rittenberg 1987)

νnc (L) =
1√
3L2

+O(1/L3), νc (L) = ν(∞)+
1

4
√
3L2

+O(1/L3)
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Result: cluster and loop densities on the cylinder of even
circumference

Results. Loop (cluster) densities for arbitrary even L= 2N. Contractible

loops. (A.P. 2021)

Exact formula

νc(2N) =
3Γ
(
N
2

)
Γ
(
3N
2

+ 1

2

)
4Γ
(
3N
2

)
Γ
(
N+1

2

) +
π22−2N32−3NΓ(3N)

Γ
(
N
2
+ 1

6

)2
Γ
(
N
2
+ 5

6

)2
Γ(N)

− 5

2

=
1

8
,
17

160
,
913

8960
,
3953

39424
,
14569

146432
,
3945737

39829504
, . . .

Asymptotic expansion

νc(2N) =
3
√
3−5
2

+
1

4
√
3
(2N)−2− 23

48
√
3
(2N)−4+O

(
N−6

)
.
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Result: cluster and loop densities on the cylinder of even
circumference

Results. Loop (cluster) densities for arbitrary even L= 2N. Non-contractible

loops. (A.P. 2021)

Exact formula

νnc(2N) = 2
2(N−2)Γ(N)
Nπ2Γ(3N)

33NΓ

(
N

2
+
1

6

)2

Γ

(
N

2
+
5

6

)2

−
12π2Γ

(
3N
2

)2
Γ
(
N
2

)2


=
1

8
,
11

320
,
421

26880
,
1403

157696
,
4189

732160
,

952067

238977024
, . . .

Asymptotic expansion

νnc(2N) =
1√
3
(2N)−2− 17

18
√
3
(2N)−4+

1021

216
√
3
(2N)−6+O

(
N−8

)
.
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Steps of solution: From O(1) DLM to six-vertex model

Transfer matrix of O(1) DLM model

Construct O(1) DLM con�gurations on the cylinder layer by layer acting with the transfer
matrix.

Consider a vector space spanning the basis consisting
of vectors indexed by partial non-crossing pairings of
L points on the outer boundary of annulus (pairings
depicted by chords + defects linking a point to in�n-
ity).

Action of O(1) DLM transfer matrix converts basis vectors to basis vectors (pairings to
pairings) by rewiring the links

=     

Up to a normalization by the factor 2L the trasfer matrix is the transition matrix of a
Markov chain. Its largest eigenvalue is ΛDLM

0 = 2L is non-degenerate and corresponds to
the stationary state eigenvector with non-negative components.
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Steps of solution: From O(1) DLM to six-vertex model

Stationary state

Stationary state eigenvector
LΨL = 2LΨL

Stationary state is a linear combination of the perfect non-crossing pairings

+( (3 ( (+ + + +

Stationary states of the O(1) DLM for L= 4

Stationary state eigenvector has a rich combinatorial content (Razumov, Stroganov,

2001). The probability normalization equals to the number half turn symmetric ASM (
GNPR, 2002; Di Francesco, Zinn-Justin, Zuber 2006):

AHT(L) =
L/2−1

∏
k=0

(3k+2)!(3k)!

(L/2+k)!2
,

and the components contain their re�ned enumeration.

The average stationary state observables are expected to be given by rational numbers.
Can one use the toolbox of integrable systems to calculate them?
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AHT(L) =
L/2−1

∏
k=0

(3k+2)!(3k)!

(L/2+k)!2
,

and the components contain their re�ned enumeration.

The average stationary state observables are expected to be given by rational numbers.
Can one use the toolbox of integrable systems to calculate them?
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Steps of solution: From O(1) DLM to six-vertex model

Residual entropy of square ice.

Haw many ways are there to arrange the molecules H2O of water on the square lattice.

o o o

o o o

o o o

HHH

H

H

H

HH

H

H

H
H

H

H

H

H

H
H

S = kN lnW

Linus Pauling (1935): W ≃ 3

2
= 1.5

Elliot Lieb (exact, 1967): W =
(
4

3

) 3
2 ≃ 1.5396
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Steps of solution: From O(1) DLM to six-vertex model

Six-vertex model

Six vertex model is a probability distribution on the set Ω(L ) of compatible arrow
con�gurations on a domain L of the square lattice:

P(ω) =
W (ω)

ZL

Statistical (Boltzmann) weight of an arrow con�guration :

W (ω) = a
#(a1)
1

. . .c
#(c2)
2

Partition function:
Z6V

L = ∑
ω∈Ω(L )

W (ω)
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Steps of solution: From O(1) DLM to six-vertex model

From loops to six-vertex model (Baxter,Kelland,Wu 1976)

Six-vertex model
sum over connectivities←−−−−−−−−−−−−−−− Directed loop model

sum over directions−−−−−−−−−−−−→ Loop model

= =

=

=

=

=

=

=

=

= =

=+ +

Let us set a1 = b1 = u1/2,a2 = b2 = u−1/2,c1 = c2 = q1/2+q−1/2.

Then, the weights of contractible and non-contractible loops on an in�nite cylinder of even
circumference L are

n= 2q = q+q−1 and v = uL/2+u−L/2,

Let L be an L×K rectangular domain with periodic boundary conditions (torus with periods
L,K). The per-site free energies of Dense Loop Model and Six-Vertex model on the in�nite
cylinder obtained in the limit K → ∞ coincide:

fL(n,v) = lim
K→∞

1

KL
lnZ6V

L,K (q,u) = lim
K→∞

1

KL
lnZDLM

L,K (n,v).
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Steps of solution: From O(1) DLM to six-vertex model

From loops to six-vertex model

The Dense loop-Six Vertex correspondence ensures the contractible and
non-contractible loop weights

n = 2q = q+q−1 and v = uL/2+u−L/2,

respectively.

Unit weights, w = v = 1, at the Razumov-Stroganov stochastic point

q = uL/2 = e i π

3

Loop densities are derivatives of the free energy

νc(L) = n
d

dn

∣∣∣∣
n=1

fL(n,1), νnc(L) = v
d

dv

∣∣∣∣
v=1

fL(1,v)
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Steps of solution: From O(1) DLM to six-vertex model

Steps of solution

Construct transfer-matrix of the six vertex model. The free energy is given by its
largest eigenvalue.

Diagonalize the transfer-matrix by the Bethe ansatz. ⇒ Bethe equations.

Reformulate Bethe equations into T-Q, T-P functional equations.

At the Razumov-Stroganov point T-Q, T-P equations are reduced to a single
di�erence equation solved in terms of the hypergeometric functions (Fridkin,
Stroganov, Zagier 2000,2001). ⇒ The largest eigenvalue.

Calculate derivatives of the free energy.

Simplify from hypergeometric to Gamma-functions.
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O(1) DLM on cylinder of odd circumference and half-turn
self-dual percolation

O(1) DLM on cylinder of odd circumference

Since no perfect matching of an odd number of points is possible, at least one
in�nite defect exists in any con�guration of O(1) DLM at a cylinder of even
circumference. Hence, no non-contractible loops are present.

The stationary state of the associated Markov chain contains only con�gurations
with a single defect and all other sites paired.

The largest eigenvalue of the associated six-vetex model is twice degenerate with
eigenstates belonging to the invariant subspaces HM with M = (L±1)/2. Under
spin-link correspondence they are interpreted as the link states with directed
defects.
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O(1) DLM on cylinder of odd circumference and half-turn
self-dual percolation

O(1) DLM on cylinder of odd circumference and percolation

Correspondence between the con�guration of the O(1) loop model (pictured twice side-
by-side in thin black solid lines with the defect line shown in blue) and the associated
percolation cluster (thick solid black lines) on the rotated lattice. There is a dual perco-
lation cluster pictured in thick grey solid lines.
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O(1) DLM on cylinder of odd circumference and half-turn
self-dual percolation

Result. Loop (cluster) density for odd L= 2N+1.
(A.P., A. Tro�mova ,2024)

Exact formula:

ν(2N+1) =
1

1+2N

(
Γ(N

2
)Γ( 3

2
+ 3N

2
)

Γ( 3N
2
)Γ( 1

2
+ N

2
)
+

Γ( 1
2
+ N

2
)Γ(2+ 3N

2
)

Γ(1+ N
2
)Γ( 1

2
+ 3N

2
)

)
− 5

2

=
1

12
,
37

400
,
597

6272
,
2441

25344
,
78035

805376
, . . . ,

Asymptotic expansion:

ν(L) =
3
√
3−5
2

− 1

4
√
3
L−2+

35

144
√
3
L−4+O(L−6).
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Percolation on a tilted lattice

O(1) DLM/percolation on tilted lattice

How does the change of the lattice orientation a�ects the loop/cluster densities?
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Percolation on a tilted lattice

O(1) DLM/percolation on tilted lattice

Fix two non-negative co-prime integers m,n ∈ N0, which are not zero
simultaneously, and positive integer l ∈ N, such that

L= (m+n)l ∈ 2N

is an even positive integer.

Consider O(1) DLM on a strip of
the square lattice L = (V ,E) with
V = {1, . . . , ln} × Z and E = {(v ,v +
ex ),(v ,v+ey ))}v∈V , rolled into a cylin-
der with helical boundary conditions, i.e.
v ≡ v+nl ·ex −ml ·ey for any v ∈V in-
troducing a tilt with angle α, such that
tanα =m/n.

May 16, 2025 30 / 37



Percolation on a tilted lattice

O(1) DLM/percolation on tilted lattice

Fix two non-negative co-prime integers m,n ∈ N0, which are not zero
simultaneously, and positive integer l ∈ N, such that

L= (m+n)l ∈ 2N

is an even positive integer.

Consider O(1) DLM on a strip of
the square lattice L = (V ,E) with
V = {1, . . . , ln} × Z and E = {(v ,v +
ex ),(v ,v+ey ))}v∈V , rolled into a cylin-
der with helical boundary conditions, i.e.
v ≡ v+nl ·ex −ml ·ey for any v ∈V in-
troducing a tilt with angle α, such that
tanα =m/n.

May 16, 2025 30 / 37



Percolation on a tilted lattice

Inhomogeneous six vertex model (Fujimoto, 1994)

Auxiliary vertices.

{
{

Tilted lattice from in-homogeneous model.
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Percolation on a tilted lattice

Results. Loop/cluster densities. m = n = 1 (A.P. 2023)

l νc(l ,1,1) νnc(l ,1,1) ν(l ,1,1)

1 1
6

1
3

1
2

2 13
110

9
110

1
5

3 1423
13338

229
6669

11
78

4 1113499
10834754

405855
21669508

677
5572

5 5979030577
59179172262

1747404017
147947930655

85013
753370

6 217910906936461
2176660978677230

17718816661443
2176660978677230

1996408
18442085

7 1193745058447655963
11989554297204369378

249900145094950907
41963440040215292823

3347923855
31727676806

8 8835071648423645732519
89051351248492234913674

1619796777034753048635
356205404993968939654696

208657158071
2010948047656

9 3973328570636277936805618733
40145601162806730995798838798

71993860817379312406691717
20072800581403365497899419399

77376513420899
754454218879206

Table: Exact densities of critical percolation clusters on the lattice in standard

orientation rolled into a cylinder, n =m = 1.
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Percolation on a tilted lattice

Results. Loop/cluster densities. m = 3,n = 4 (A.P. 2023)

l νc(l ,3,4)

2 387768065791915313

3895953850182322426

4 44195116406974440581081566067289510598931484194160698978934613738812968820065999

448965092769002158674204818544686846143985958937884255868928657300610488746952074

l νnc(l ,3,4)

2 11343951399731931

1947976925091161213

4 324703379991987605772074955808303082817396322520577832155520445581250214007026

224482546384501079337102409272343423071992979468942127934464328650305244373476037

l ν(l ,3,4)

2 505753025

4800491638

4 1025205092866657199069018079406719010967

10263935640757775218890055689049451622658

May 16, 2025 33 / 37



Percolation on a tilted lattice

Finite size corrections. Numerical check. (A.P. 2023)

The universal CFT based O(l−2) �nite size correction is expected to depend on n
and m only via the length rescaling l → l̃ = l

√
(m2+n2)/2, while the coe�cients

of the next corrections be the periodic functions of quadruple the tilt angle
α = arctan(m/n).

ν(l ,n,m) = ν(∞,n,m)+
5
√
3

24

1

l̃2
+

a(α)

l̃4
+

b(α)

l̃6

a(α) ≃ −0.0125−0.192cos(4α)

b(α) ≃ 0.00760+0.0273cos(4α)+0.495cos(8α)

10 20 30 40
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a

a
0.2 0.4 0.6 0.8
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-0.1

0.1

0.2

..

a

b

0.2 0.4 0.6 0.8

-0.4

-0.2

0.2

0.4

..
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Conclusion

Conclusion and Perspectives

Done:

We obtained the closed formulas for exact densities of loops and critical percolation
clusters on a cylinder of standard orientation (even and odd circumference)

We developed the procedure of calculating densities for tilted lattices wrapped to
cylinders of �nite circumference. Numerics based conjectures are proposed for the
dependence of �nite size corrections on the tilt.

To be done:

Loops and percolation with various boundary conditions and on di�erent lattices

Higher cumulants

More general correlation functions.
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Conclusion
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Conclusion

THANK YOU!
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