speaker: **G. Prokhorov** 1,2

in collaboartion with

- D. Shohonov<sup>1</sup>
- O. Teryaev 1,2
- N. Tsegelnik <sup>1,2</sup>
- V. Zakharov<sup>2,1</sup>

based on work:

[GP, Oleg V. Teryaev, Valentin I. Zakharov, arXiv: 2304.13151 (2024)]

**INFINUM 2025,** BLTP, JINR, Dubna, May 12-16, 2025

Possible phase transition in accelerated system

<sup>&</sup>lt;sup>1</sup> Joint Institute for Nuclear Research (JINR), BLTP, Dubna

<sup>&</sup>lt;sup>2</sup> NRC Kurchatov Institute, Moscow

## **Contents**

- Part 1. Introduction and Motivation
- Part 2. Unruh effect from the quantum-statistical approach
- Part 3. Phase transition at the Unruh temperature
- Part 4. **Discussion**

**Conclusion** 

Part 1

Introduction and Motivation

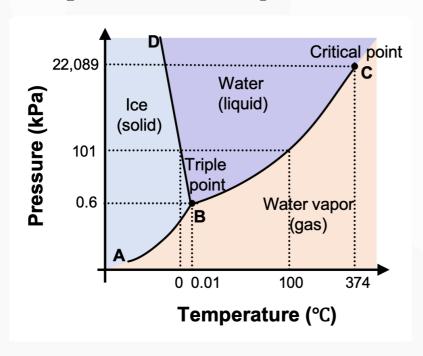
### Phase transitions

• Phase transitions are a universal phenomenon that play a central role in physics (e.g. the modern **Universe** arose as a result of a series of phase transitions)

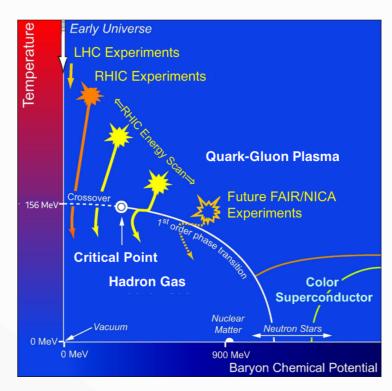
grand unification? electroweak phase transition 
$$SU(5) \to SU(3) \times SU(2) \times U(1) \to SU(3) \times U(1)$$

• The search for a phase transition (or crossover) in **quantum chromodynamics** is one of the main tasks of fundamental high-energy physics

**Examples:** water-ice-vapor, QCD...



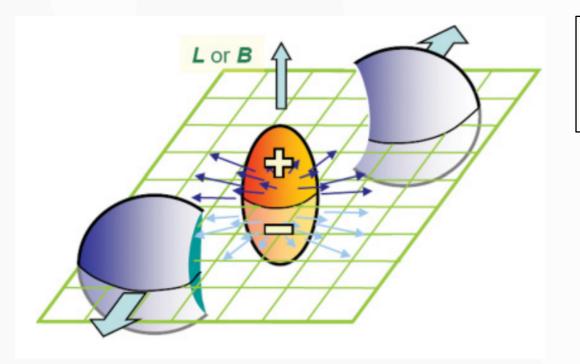
**UW-Madison Chemistry 103/104 Resource Book** 



The Hot QCD White Paper (2015)

# Hydrodynamics in heavy ion collisions

- New area: vortical relativistic fluids in external fields
- Off-center collisions of heavy ions produce huge magnetic fields and enormous angular momentum.



- Rotation is 25 orders of magnitude faster than the rotation of the Earth:
- the vorticity of order 10<sup>22</sup> sec<sup>-1</sup>

Annual since 2015:

"International Conference on Chirality, Vorticity, and Magnetic Field in Quantum Matter"

(Romania 2024, Brazil 2025)

# Hydrodynamics in heavy ion collisions

Plenty results on vorticity and magnetic field effects:

```
-- quantum anomaly transport effects:

chiral magnetic effect (CME), PRD (2008), e-Print: 0808.3382]

chiral vortical effect (CVE), [Son, Surowka, PRL (2009), e-Print: 0906.5044]

kinematical vortical effect (KVE), [Prokhorov, Teryaev, Zakharov, PRL (2022), e-Print: 2207.04449]

many other effects...

-- vortical polarization [STAR, Nature (2017), arXiv: 1701.06657]

[Rogachevsky, Sorin, Teryaev, PRC (2010), e-Print: 1006.1331]

-- rotation on the lattice [Braguta, Kotov, Kuznedelev, Roenko, PRC (2021), e-Print: 2102.05084]

...
```

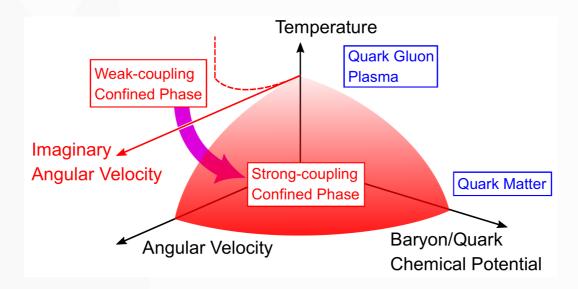
Modern development: acceleration effects

```
Vorticity↔Magnetic fieldAcceleration↔Electric field
```

It is natural to consider acceleration effects in addition to vorticity.

# Phase diagrams: extra dimensions

• The question of the influence of **magnetic field** and **rotation** on the phase diagram of QCD is currently being actively studied in models and on the lattice:



https://indico.math.cnrs.fr/event/10773/contributions/11970/attachments/5157/8420/fukushima.pdf

• The question of the influence of **acceleration** on the **phase transition** is even less clear.

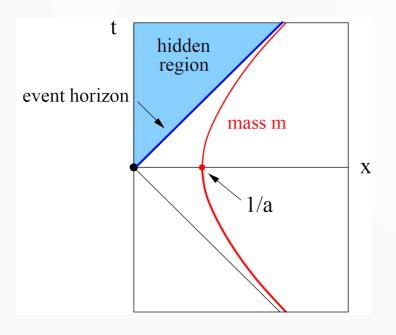
[Chernodub, 2025, e-Print: 2501.16129] and references therein

# Hawking and Unruh effects

- Black hole horizon → thermal Hawking radiation
- Equivalence principle we expect a similar effect in flat space in an accelerated frame. This is true: the **Unruh effect**.

[W. G. Unruh, Phys. Rev. D 14, 870 (1976)]

In an accelerated frame of reference, there is also an event horizon.



[Eur.Phys.J. C52 (2007) 187-201]

### **Formulation**

The Minkowski **vacuum** is perceived by an **accelerated** observer as a medium with a finite (Unruh) **temperature** 

$$T_U = \frac{a}{2\pi}$$

### **Toy-like derivation**

$$g = GM/R^2 = (R_{black \, hole} = 2GM) = 1/4GM$$

$$T_H = 1/8\pi GM = g/2\pi$$

Equivalence principle:  $g \leftrightarrow a$ 

$$T_H \rightarrow T_U = \frac{a}{2\pi}$$

# Hawking and Unruh effects

Prof. Unruh moving with acceleration feels the temperature

$$T_U = \frac{a}{2\pi}$$

A stationary observer has a temperature

$$T = 0$$



[Blasone, (2018), e-Print: 1911.06002]

# Summary of part 1: open questions

- **Unruh effect** in heavy ion **collisions**?
  - -- The Unruh effect from a **statistical** mechanics point of view?

### **Analogy:**

Huge electric fields are predicted in HIC. They may lead to a (somewhat Unruh-like) Schwinger effect in HIC.

[Toneev, Rogachevsky, Voronyuk, Eur.Phys.J.A 52, 264 (2016)] [Taya, Nishimura, Ohnishi, PRC 110, 014901 (2024)]

Critical phenomena related to acceleration?

# Part 2

# Unruh effect from the quantum-statistical approach

[Prokhorov, Teryaev, Zakharov, JHEP (2020), e-Print: 1911.04545]

Consider relativistic fluid of particles with spin 1/2:

### **Quantities**

4-velocity of the fluid  $u_{\mu}(x)$ 

Proper temperature T(x)

Inverse temperature vector  $\beta_{\mu} = u_{\mu}/T$ 

Thermal vorticity tensor (analogous to the acceleration tensor)  $\varpi_{\mu\nu}=-\frac{1}{2}(\nabla_{\mu}\beta_{\nu}-\nabla_{\nu}\beta_{\mu})$ 

$$\varpi_{\mu\nu} = \epsilon_{\mu\nu\alpha\beta} w^{\alpha} u^{\beta} + \alpha_{\mu} u_{\nu} - \alpha_{\nu} u_{\mu}$$

 $lpha_{\mu} = a_{\mu}/T$  acceleration

We consider a medium in a state of **(global) thermodinamic equilibrium** 

[F. Becattini, L. Bucciantini, E. Grossi, L. Tinti, Eur. Phys. J. C 75, 191 (2015)]

Killing equation

$$\nabla_{\mu}\beta_{\nu} + \nabla_{\nu}\beta_{\mu} = 0$$

Very close to the Tolman-Ehrenfest's criterion and the Luttinger relation

The density operator contains the effects of **thermal vorticity** 

$$\hat{\rho} = \frac{1}{Z} \exp \left\{ -\beta_{\mu}(x) \hat{P}^{\mu} + \frac{1}{2} \varpi_{\mu\nu} \hat{J}_{x}^{\mu\nu} + \xi \hat{Q} \right\}$$

The **angular momentum** describes the effects of **vorticity**, while the **boost** generator describes the effects of **acceleration**.

$$\varpi_{\mu\nu}\hat{J}^{\mu\nu} = -2\alpha^{\rho}\hat{K}_{\rho} - 2w^{\rho}\hat{J}_{\rho}$$

The density operator can be used to find the **mean value** of the operator in a medium with a *thermal vorticity* 

$$\langle \hat{O}(x) \rangle = \operatorname{tr}\{\hat{\rho}\hat{O}(x)\}_{\mathrm{ren}}$$

The effects of **thermal vorticity** can be calculated in the framework of the **perturbation theory** (a feature is the presence of *non-commuting* operators)

$$\langle \hat{O}(x) \rangle = \langle \hat{O}(0) \rangle_{\beta(x)} + \sum_{N=1}^{\infty} \frac{\varpi^N}{2^N |\beta|^N N!} \int_0^{|\beta|} d\tau_1 d\tau_2 ... d\tau_N \langle T_{\tau} \hat{J}_{-i\tau_1 u} ... \hat{J}_{-i\tau_N u} \hat{O}(0) \rangle_{\beta(x),c}$$

The meaning of the Unruh effect is that the accelerated observer sees the **Minkowski vacuum** as a medium filled with particles with a **Unruh temperature** proportional to the acceleration

$$T_U = \frac{a}{2\pi}$$

Thus, the **mean values** of the thermodynamic quantities normalized to Minkowski vacuum should be **equal to zero** when the proper temperature, measured by comoving observer, equals to the **Unruh temperature**.

• It has been shown for scalar particles.

[F. Becattini, Phys. Rev. D 97, no. 8, 085013 (2018)]

For **fermions**, a similar effect was observed based on the Wigner function in the Boltzmann limit at a **double** Unruh temperature  $2T_U$ 

[W. Florkowski, E. Speranza and F. Becattini, Acta Phys. Polon. B 49, 1409 (2018)]

This is due to the approximate nature of the Wigner function used.

# Unruh effect from quantum statistical mechanics

$$\langle \hat{T}^{\mu\nu} \rangle = (\rho_0 + A_1 T^2 |a|^2 + A_2 |a|^4) u^{\mu} u^{\nu} - (p_0 + A_3 T^2 |a|^2 + A_4 |a|^4) \Delta^{\mu\nu}$$
$$+ (A_5 T^2 + A_6 |a|^2) a^{\mu} a^{\nu} + \mathcal{O}(a^6) \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu},$$

The final momentum integral for  ${\bf A}_2$  has the form  $~(~\tilde{p}=|{\bf p}|/T~)$ 

$$A_{2} = \int_{0}^{\infty} d\tilde{p} e^{\frac{9\tilde{p}}{2}} \tilde{p}^{3} \left( 5600\tilde{p} \left( 49\tilde{p}^{2} - 95 \right) \cosh \left( \frac{\tilde{p}}{2} \right) + 2016\tilde{p} \left( 25 - 119\tilde{p}^{2} \right) \cosh \left( \frac{3\tilde{p}}{2} \right) \right)$$

$$+53200 \left( \sinh \left( \frac{3\tilde{p}}{2} \right) - 11 \sinh \left( \frac{\tilde{p}}{2} \right) \right) \cosh^{4} \left( \frac{\tilde{p}}{2} \right) + \tilde{p} \left( -224 \left( \tilde{p}^{2} + 25 \right) \cosh \left( \frac{7\tilde{p}}{2} \right) \right)$$

$$+224 \left( 119\tilde{p}^{2} + 575 \right) \cosh \left( \frac{5\tilde{p}}{2} \right) + 18\tilde{p} \sinh \left( \frac{\tilde{p}}{2} \right) \left( -5786\tilde{p}^{2} + \left( \tilde{p}^{2} + 210 \right) \cosh \left( 3\tilde{p} \right)$$

$$-6 \left( 41\tilde{p}^{2} + 1890 \right) \cosh \left( 2\tilde{p} \right) + 3 \left( 1349\tilde{p}^{2} + 9450 \right) \cosh \left( \tilde{p} \right)$$

$$+39900 \right) \right) \left( 50400\pi^{2} \left( e^{\tilde{p}} + 1 \right)^{9} \right)^{-1},$$

This integral be found analytically

Similarly for the other components of the energy-momentum tensor

$$\langle \hat{T}^{\mu\nu} \rangle_{\text{fermi}}^{0} = \left( \frac{7\pi^{2}T^{4}}{60} + \frac{T^{2}|a|^{2}}{24} - \frac{17|a|^{4}}{960\pi^{2}} \right) u^{\mu} u^{\nu}$$

$$- \left( \frac{7\pi^{2}T^{4}}{180} + \frac{T^{2}|a|^{2}}{72} - \frac{17|a|^{4}}{2880\pi^{2}} \right) \Delta^{\mu\nu}$$

The energy-momentum tensor vanishes at the Unruh temperature

$$\left\langle \hat{T}^{\mu\nu} \right\rangle = 0 \qquad (T = T_U)$$

Thus, a consequence of the **Unruh effect** for Dirac fields is **justified**.

• The same can be shown for other spins and finite mass.

Part 3

# Phase transition at the Unruh temperature

# Minimal temperature?

- It is assumed that  $T_U$  is minimal, since the energy becomes negative below  $T_U$  [F. Becattini, Phys. Rev., D97(8):085013, 2018.]
  - We know that in heavy ion collisions there is a problem of fast thermalization [D. Kharzeev, K. Tuchin. Phys. A, 753:316–334, 2005.]



Presumably there are states with  $T < T_U$ 

Negative energies exist in physics (for example, in the ergosphere of rotating black holes).

### **Goal:** construct an analytical continuation to the region $T < T_U$

• We will show that for massless fields with spin 1/2 it is impossible to use the old formulas → a phase transition occurs

### First signs:

• Instability at the Unruh temperature in the axial current of fermions (thermodynamic approach):

```
[Prokhorov, G., Teryaev, O., & Zakharov, V. (2018). Phys. Rev. D, 98(7), 071901]
```

• Similar instability in energy density (thermodynamic approach):

```
[Prokhorov, G. Y., Teryaev, O. V., & Zakharov, V. I. (2019). Phys. Rev. D, 100(12), 125009]
```

### **Similar observations:**

• Imaginary mass in scalar theory with interaction below the Unruh temperature:

```
[Diakonov, D. V., & Bazarov, K. V. (2023), 2301.07478]
```

• Different formulas for the free energy of massive scalar fields above and below the Unruh temperature:

```
[Akhmedov, E. T., & Diakonov, D. V. (2022). Phys. Rev. D, 105(10), 105003]
```

• "Critical" points with "imaginary" rotation:

```
[Chernodub, M. N. (2022), 2210.05651]
```

Problems with the limit  $T \to T_U$  for higher spins (3/2, 2) in Schwinger-DeWitt coefficients: [D. V. Fursaev, G. Miele. Nucl. Phys. B, 484:697–723, 1997]

The effects of acceleration can also be investigated from the point of view of an accelerated observer. In this case, the Rindler coordinates are to be used:

$$ds^{2} = -\rho^{2}d\theta^{2} + dx^{2} + dy^{2} + d\rho^{2}$$

Passing to imaginary time: 
$$ds^2 = \left[\rho^2 d\theta^2 + d\rho^2\right] + d\mathbf{x}_{\perp}^2$$

 $\mathcal{M}=\mathbb{R}^2\otimes\mathcal{C}^2_{u}$ 

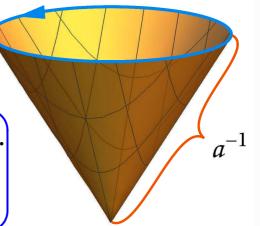
It describes a flat two-dimensional cone with an angular deficit  $2\pi - a/T$ . This metric contains a **conical singularity** at  $\rho = 0$ 

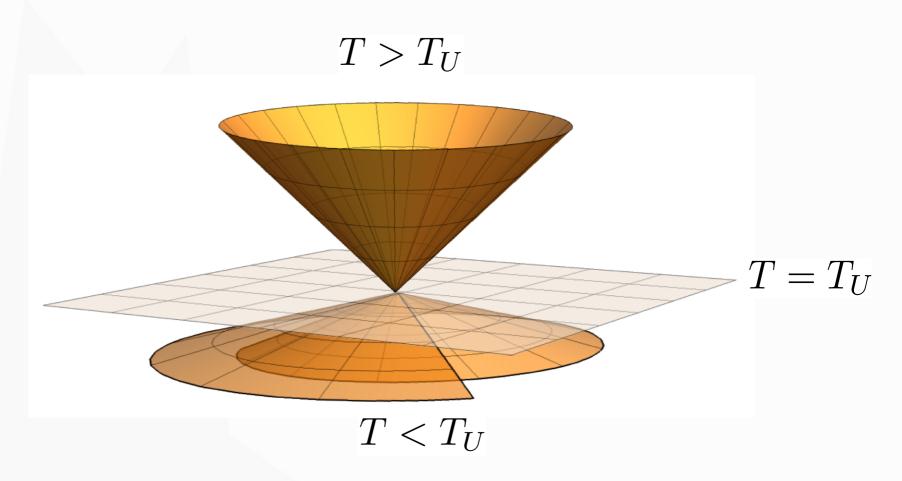
**<u>Dictionary</u>** for translation

*Thermodynamic* characteristics in *Geometrical*:

Inverse **acceleration**  $\iff$  **distance** from the **vertex**.

Inverse proper **temperature**  $\iff$  **circumference**.





- The region  $T < T_U$  corresponds to a cone with an angle greater than 360 degrees.
- Odd number of full rotations of 360 degrees:  $T_k = T_U/(2k+1)$

[V. B. Bezerra, N. R. Khusnutdinov. Class. Quant. Grav., 23:3449-3462, 2006]

- Consider the **Green function** of the Dirac fields in the Euclidean Rindler space:
- $\mathcal{D}_x S_E(x; x') = -I_4 \frac{\delta^4(x x')}{\sqrt{g}}$
- It is more convenient to consider the Green function of the **square** of the Dirac operator:
- $\mathcal{D}_x^2 G_E(x; x') = -I_4 \frac{\delta^4(x x')}{\sqrt{g}}$

• They are **related** to each other:

 $S_E(x;x') = D_x G_E(x;x')$ 

• Dirac operator is defined as:

 $D = \gamma_E^{\mu} \nabla_{\mu}$ 

We use the tetrad of the form:

$$e^{\mu}_{(a)} = e^{\mu(a)} = \begin{pmatrix} \frac{\nu}{\rho} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Curved Dirac matrices:  $\gamma_E^{\mu} = e_{(a)}^{\mu} \gamma_E^{(a)}$ 

• Covariant  $\nabla_{\mu}\psi=(\partial_{\mu}+\Gamma_{\mu})\psi$  derivative includes spinor connection:  $\Gamma_{\mu}=\frac{1}{2}\Sigma_{(a)(b)}e^{(a)\lambda}\nabla_{\mu}e_{\lambda}^{(b)}$ 

• **Squared Dirac operator** (we neglect singularity in the apex):

$$\cancel{D}_{x}^{2} = I_{4} \left( g^{\mu\nu} \partial_{\mu} \partial_{\nu} - \frac{1}{4\rho^{2}} + \frac{1}{\rho} \partial_{\rho} \right) + i \frac{2\nu}{\rho^{2}} \Sigma_{0}$$

[B. Linet. J. Math. Phys., 36:3694–3703, 1995]

Consider the eigenmodes of the square of the Dirac operator

$$D_x^2 \phi(x) = -\lambda^2 \phi(x)$$

• Tetrad choise fixes **antiperiodic** boundary conditions:

$$\phi \left(\varphi + 2\pi n\right) = (-1)^n \phi \left(\varphi\right)$$

 Solutions can be classified by eigen values of mutually commuting operators:

$$\widehat{p}_{\mathbf{x}}\phi(x) = -i\partial_{\mathbf{x}}\phi(x) = p_{\mathbf{x}}\phi(x)$$

$$\widehat{p}_{\mathbf{y}}\phi(x) = -i\partial_{\mathbf{y}}\phi(x) = p_{\mathbf{y}}\phi(x)$$

$$\widehat{p}_{\mathbf{0}}\phi(x) = -i\partial_{\varphi}\phi(x) = \left(n + \frac{1}{2}\right)\phi(x)$$

$$\Sigma_{\mathbf{0}}\phi(x) = s_{\mathbf{1}}\frac{1}{2}\phi(x), \quad s_{\mathbf{1}} = \pm 1$$

$$- \text{Matsubara frequency, e.g.}$$

$$i(n + \frac{1}{2})\varphi = i\pi T(2n + 1)\tau$$

• All the eigen values:  $q=(p_{\rm x},p_{\rm y},n+1/2,\lambda,is_1/2,s_2/2)$ 

The solution to the eigenvalue equation of operator  $D_x^2$  is well known...

But there are two solutions!

$$\phi_q^{\pm}(x) = \frac{\sqrt{\nu}}{4\pi^{3/2}} e^{ip_x x + ip_y y + i(n + \frac{1}{2})\varphi} J_{\pm\beta_{s_1}}(\xi \rho) w_{(s_1, s_2)}$$
 where 
$$\beta_{s_1} = \nu(n + \frac{1}{2}) - \frac{s_1}{2}$$

• Only one of them is regular on the horizon ho o 0 Really, on the horison, asymptotiacally, one has  $J_a(x)\sim x^a$ 

At the Unruh temperature **two lowest** Matsubara modes **change** there solutions!

We consider two modes 
$$(n = 0, s_1 = -1)$$
 and  $(n = -1, s_1 = 1)$ 

finite solutions at

$$T > T_U \quad (\nu > 1)$$

$$\phi_{n=0,s_1=-1}^+ = (...) J_{\nu/2-1/2}(\xi \rho)$$

$$\phi_{n=-1,s_1=1}^- = (...) J_{-(-\nu/2+1/2)}(\xi \rho)$$

 $\phi_{n=0,s_1=-1}^- = (...) J_{-(\nu/2-1/2)}(\xi \rho)$ 

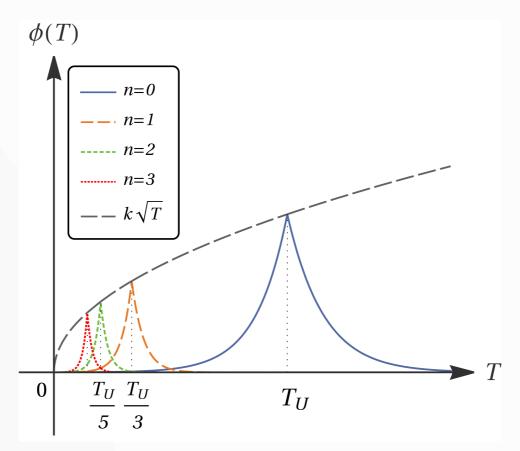
$$\phi_{n=-1,s_1=1}^- = (...) J_{-(-\nu/2+1/2)}(\xi\rho) \implies \phi_{n=-1,s_1=1}^+ = (...) J_{-\nu/2+1/2}(\xi\rho)$$

 E.g. when passing through  $T = T_U$ 

$$\phi^{+}_{(n=0, s_{1}=1)} \rightarrow \phi^{-}_{(n=0, s_{1}=1)}$$
 $\phi^{-}_{(n=-1, s_{1}=-1)} \rightarrow \phi^{+}_{(n=-1, s_{1}=-1)}$ 

finite solutions at

 $T < T_U \quad (\nu < 1)$ 



- When geometry changes from cone to plane, **lowest Matsubara modes** become **singular on the horizon** and change solution. This leads to **peaks** in the behavior of the modes.
- The situation repeats for other pairs of higher Matsubara modes at the points

$$T_k = T_U/(2k+1)$$

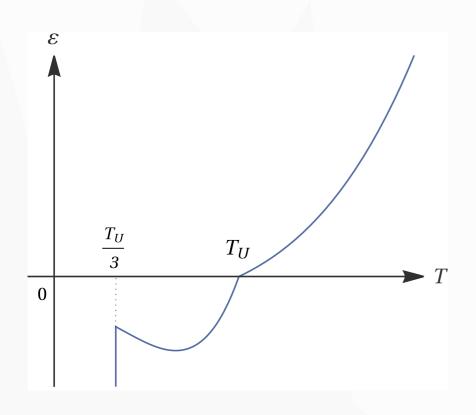
- But **different** mean values below and above  $T_k = T_U/(2k+1)$
- Let us consider the first critical point:

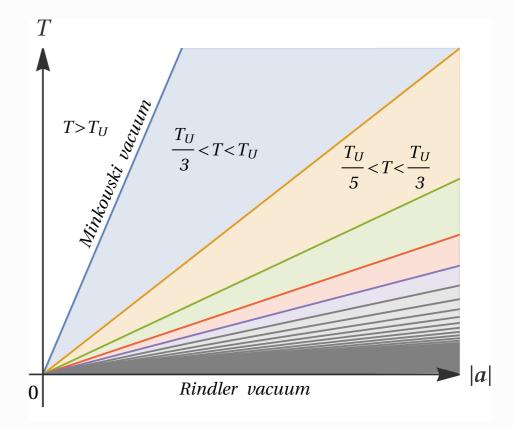
$$\frac{|a|}{6\pi} < T < \frac{|a|}{2\pi}$$

$$\begin{split} \langle \hat{T}^{\alpha}_{\beta} \rangle &= \left( \frac{127\pi^2 T^4}{60} - \frac{11|a|^2 T^2}{24} - \frac{17|a|^4}{960\pi^2} \right) \left( u^{\alpha} u_{\beta} - \frac{1}{3} \Delta^{\alpha}_{\beta} \right) \\ &+ \left( \pi |a| T^3 - \frac{T|a|^3}{4\pi} \right) \widetilde{\Delta}^{\alpha}_{\beta} \,, \qquad \qquad \widetilde{\Delta}^{\alpha}_{\beta} &= \Delta^{\alpha}_{\beta} + \frac{a^{\alpha} a_{\beta}}{|a|^2} \\ \Delta^{\alpha}_{\beta} &= \delta^{\alpha}_{\beta} - u^{\alpha} u_{\beta} \end{split}$$

$$T > T_U$$

$$\langle \hat{T}^{\mu\nu} \rangle = \left( \frac{7\pi^2 T^4}{60} + \frac{T^2 |a|^2}{24} - \frac{17|a|^4}{960\pi^2} \right) u^{\mu} u^{\nu} - \left( \frac{7\pi^2 T^4}{180} + \frac{T^2 |a|^2}{72} - \frac{17|a|^4}{2880\pi^2} \right) \Delta^{\mu\nu}$$





We confirm instabilties at the points:

$$T_k = T_U/(2k+1)$$

phase diagram

Second order phase transition:

$$\left| \frac{\partial \varepsilon}{\partial T} \right|_{T \to T_U + 0} = \frac{4\pi T_U^3}{5}, \qquad \frac{\partial \varepsilon}{\partial T} \right|_{T \to T_U - 0} = \frac{24\pi T_U^3}{5}$$

$$T > T_U \qquad \langle \hat{T}_{\beta}^{\beta} \rangle = 0$$

$$T < T_U$$
  $\langle \hat{T}_{\beta}^{\beta} \rangle = \frac{\nu(\nu^2 - 1)}{4\pi^2 \rho^4} = 2\pi T |a| \left( T^2 - \frac{|a|^2}{4\pi^2} \right)$ 

- Trace as an **order parameter**?
- The change in energy is associated with a change in the energy of the two lowest modes:  $T^{2|a|^{2}}$

$$\Delta \varepsilon = \Delta \varepsilon_{(n=0, s_1=1)} + \Delta \varepsilon_{(n=-1, s_1=-1)} = 2\pi^2 T^4 - \frac{T^2 |a|^2}{2}$$

Part 4

Discussion

Thus, we found the same critical points as in the (approximate) statistical approach:

[Prokhorov, G., Teryaev, O., & Zakharov, V. (2018). Phys. Rev. D, 98(7), 071901]

Critical points: 
$$T = T_U/(2k+1) \rightleftharpoons \nu = 1/(2k+1)$$
  $k = 0, 1, 2...$ 

Such mode jumping behaviour will lead to **new Green's functions** and **change** the quantum **mean values**.

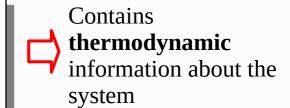
### **Fundamental reason:**

"finiteness of the speed of light"

(leads to non-compactness of the Poincaré group → non-unitarity of representations → anti-Hermitianity of the boost generator)

# Acceleration as imaginary chemical potential

**Wigner function** 
$$W(x, k)_{AB} = -\frac{1}{(2\pi)^4} \int d^4y \ e^{-ik \cdot y} \langle : \Psi_A(x - y/2)\overline{\Psi}_B(x + y/2) : \rangle$$
 Contains **thermodynamic** information about the system



**Ansatz:** 

$$X(x,p) = \left\{ \exp\left(\frac{\varepsilon_p I_4}{T} - \frac{|a|\Sigma_0}{T}\right) + I_4 \right\}^{-1}$$

[F. Becattini, V. Chandra, L. Del Zanna and E. Grossi, Annals Phys. 338 (2013) 32.]

See also talk of Amaresh Jaiswal

# Acceleration as imaginary chemical potential

Energy density of accelerated fermion gas:

$$\rho = \frac{7\pi^{2}T^{4}}{60} + \frac{T^{2}a^{2}}{24} - \frac{17a^{4}}{960\pi^{2}} = 2\int \frac{d^{3}p}{(2\pi)^{3}} \left(\frac{|\mathbf{p}| + ia}{1 + e^{\frac{|\mathbf{p}|}{T} + \frac{ia}{2T}}} + \frac{|\mathbf{p}| - ia}{1 + e^{\frac{|\mathbf{p}|}{T} - \frac{ia}{2T}}}\right) + 4\int \frac{d^{3}p}{(2\pi)^{3}} \frac{|\mathbf{p}|}{e^{\frac{2\pi|\mathbf{p}|}{a}} - 1} \qquad (T > T_{U}) \quad \text{in red: modifications compared to the Wigner function}$$

- In the first integral, the acceleration enters as an imaginary chemical potential

$$ullet$$
 Instabilities (jumps) at the points:  $T_k = T_U/(2k+1)$ 

# Comparison with the Wigner function

• Can be compared with previous results from the statistical approach and the approximate Wigner function:

Wigner function:  $X(x,p) = \left\{ \exp\left(\beta_{\mu}p^{\mu}I_4 \pm \frac{a_{\mu}K_s^{\mu}}{T}\right) + I_4 \right\}^{-1}$ 



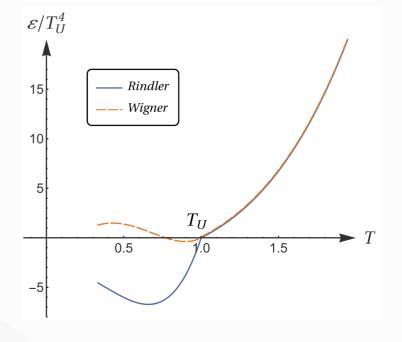
Energy density  $\varepsilon = 2 \int \frac{d^3p}{(2\pi)^3} \left( \frac{|\mathbf{p}| + i|a|}{1 + e^{\frac{|\mathbf{p}|}{T} + \frac{i|a|}{2T}}} + \frac{|\mathbf{p}| - i|a|}{1 + e^{\frac{|\mathbf{p}|}{T} - \frac{i|a|}{2T}}} \right) + 4 \int \frac{d^3p}{(2\pi)^3} \frac{|\mathbf{p}|}{e^{\frac{2\pi|\mathbf{p}|}{|a|}} - 1}$ 

$$T < T_U$$

$$\varepsilon = \frac{127\pi^2 T^4}{60} - \frac{11T^2|a|^2}{24} - \frac{17|a|^4}{960\pi^2} - \pi T^3|a| + \frac{T|a|^3}{4\pi}$$

"Rigorous" analytic continuation:

$$\varepsilon = \frac{127\pi^2 T^4}{60} - \frac{11|a|^2 T^2}{24} - \frac{17|a|^4}{960\pi^2}$$



# **Cosmic strings: duality**

the periodic coordinate

**Cosmic string** metric is *equivalent* to the **Euclidean Rindler** metric up to a coordinate re-designation (*J. S. Dowker, Class. Quant. Grav. 11, L55 (1994)*)

|                                                              | <b>Euclidean</b> Rindler metric                           | Cosmic string                                                 |
|--------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
| Form of metric                                               | $ds^2 = \rho^2 d\theta^2 + d\rho^2 + d\mathbf{x}_\perp^2$ | $ds^{2} = -dt^{2} + dz^{2} + \rho^{2}d\theta^{2} + d\rho^{2}$ |
| Angular deficit                                              | $2\pi - a/T$                                              | $2\pi - 2\pi/\nu$                                             |
| The component of the energy-momentum tensor corresponding to | $T_0^0$                                                   | $T_2^2$                                                       |



translation from cosmic strings to Euclidean Rindler spacetime

$$\rho_{Rindler} = \langle T_2^2 \rangle_{string}$$
 ,  $\nu = 2\pi T/a$ 

# **Cosmic strings: duality**

• Since the metric of the cosmic string has the same form, then similar instabilities appear for the **cosmic string** too:

$$G^{E}(x; x'|N_0)_{string} = G^{E}(x; x'|N_0)_{Rindler}\Big|_{\mathbf{x} \to \tau, \mathbf{y} \to \mathbf{z}, \Sigma_0 \to \Sigma_3}$$

cosmic string density becomes negative if we go into the hypothetical region

$$T < T_U \longrightarrow \mu^* = \frac{\nu - 1}{4\nu} < 0$$

Finally we obtain:

$$\nu > 1: \quad \langle T^{\alpha}_{\beta} \rangle = \frac{17 - 10\nu^2 - 7\nu^4}{2880\pi^2\rho^4} \operatorname{diag}(1, 1, -3, 1) ,$$

$$\frac{1}{3} < \nu < 1: \quad \langle T^{\alpha}_{\beta} \rangle = \frac{17 + 110\nu^2 - 127\nu^4}{2880\pi^2\rho^4} \operatorname{diag}(1, 1, -3, 1) + \frac{\nu(\nu^2 - 1)}{8\pi^2\rho^4} \operatorname{diag}(1, 0, 0, 1) .$$

## Quantum phase transition

Has the features of both **thermal** and **quantum** phase transition.

[Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011]

- On the one hand, it occurs at the finite temperature, which makes it similar to the classical thermal transition.
- On the other hand, the critical temperature, having the Planck scale, is extremely small

$$t_a = c/|a|$$

$$t_r = \xi \frac{\hbar}{k_B T} \iff T_U = \frac{\hbar |a|}{2\pi k_B c}$$

$$\xi = 1/2\pi$$

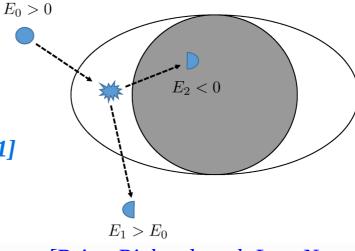
- Do states below the Unruh (Hawking) temperature relate (can be realized or related in some way) to the interior of a black hole?
- Simple arguments in favor this:

$$T < T_U \qquad \qquad \varepsilon < 0$$

Inside the ergosphere the energy is negative

[R. Penrose and R. M. Floyd. Nature, 229:177-179, 1971]

**Superradiance:** extraction of energy from the black hole



[Brito, Richard et al. Lect.Notes Phys. 906 (2015) pp.1-237]

Negative modes inside a black hole (as a source of instability of the classical manifold)

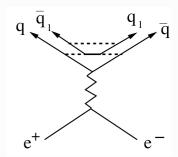
[G. L. Pimentel, A. M. Polyakov, and G. M. Tarnopolsk, Rev. Math. Phys. 30, no. 07, 1840013 (2018)]

$$S_{\text{eff}}(v) = mT\sqrt{1 - V^2} + \dots$$

# **Predictions for Phenomenology**

• The mechanism of thermalization with the Unruh effect

[P. Castorina, D. Kharzeev, H. Satz, Eur.Phys.J. C 52 (2007) 187-201]



• A quark pair is born in an accelerated state due to string tension: Unruh effect "thermalizes" hadronic spectra

#### Not everything is clear with this scenario:

-- due to the Unruh effect, particles are born in an accelerated frame of reference, and hadronization is observed in the laboratory, how can this be?

# **Predictions for Phenomenology**

**Alternative** qualitative description of **thermalisation in HIC**:

- -- first the nuclei collide large acceleration due to stopping forces
- -- Thermalization had not yet occurred at the very beginning

It should be expected that at the **initial** moments **after** the **collision**:

$$T < T_U$$

Confirmed by direct collision simulation!

-- if earlier the state  $T < T_U$  was "hidden" inside the black hole, now it is hidden by confinement (a region in Hilbert space)?

# **Predictions for Phenomenology**

If there is a **process of type** 

```
(black hole + matter with T < T_U) \rightarrow (Minkowskian vacuum) + (thermal matter)
```

Then in this case it leads to the appearance of a **thermal hadron spectrum** with the **Unruh temperature** (which is of the order of QCD scale), which is what is needed for phenomenology

```
[T. Morita, Phys. Rev. Lett. 122, 101603 (2019)]
```

- -- thermalization occurs as a sub-barrier transition an explanation for the **fast thermalization**?
- -- is the **phase transition at the Unruh temperature** closely related to the **QCD transition**? Alternative scenario of hadronisation.

# Modeling

[Prokhorov, Shohonov, Teryaev, Tsegelnik, Zakharov, (2025) arXiv: 2502.10146]

Details will be given in the next talk of N. Tsegelnik

## Statement of the problem and methods

# Problems and motivation for modeling:

 The results obtained motivate acceleration modeling in HICs. Little studied, see however:

[Karpenko, Becattini, Nucl.Phys.A (2019), arXiv:1811.00322]

- Check that extreme accelerations are generated.
- Verify the existence of "exotic" states with  $\,T\,<\,T_U\,$
- But we obtained a **little more**.

#### What was done:

- The collision of two gold nuclei Au-Au are considered.
- The parton-hadron-string dynamics (PHSD) model is used: [Cassing, Bratkovskaya, Nucl.Phys.A (2009)]
- The space distributions of acceleration and temperature and their time evolution were obtained.

## Results: central Au-Au collisions

• The acceleration is maximum at the **initial time moments** and has the order of:

$$a \sim 1 \, GeV \sim 10^{32} \, m/sec^2$$

-- acceleration is **extremely large in nature** 

[Вергелес, Николаев, Обухов, Силенко, Теряев, УФН 2023, e-Print: 2204.00427]

- Indeed, states with  $T < T_U$  are formed.
- The region  $T < T_U$  corresponds predominantly to the hadron phase, and region  $T > T_U$  to the quark-gluon phase.
- The prediction about the connection between hadronization and phase transition at Unruh temperature is qualitatively confirmed

# Conclusion

#### **Conclusion**

- The Unruh effect, from the point of view of statistical quantum mechanics, leads to **vanishing of averages** (e.g., the energy-momentum tensor) at  $T = T_U$  Averages can be found in ordinary flat space from effective **statistical** interaction.
- We have **shown Unruh effect in statistics** explicitly for massless and massive free fields with spins 0 and  $\frac{1}{2}$ .
- We have constructed an analytical continuation to the temperature region below the Unruh temperature. At  $T=T_U$  a **quantum phase transition** occurs, associated physics near horizon.
- The obtained corrections correspond to the corrections in the field of the cosmic string.
- Interpretation of **hadronization** as an effect associated with a phase transition was proposed.
- The **modeling confirms** the formation of states with temperature  $T < a/2\pi$  at the early stages of HICs, and demonstrates **phase separation** with respect to  $T = a/2\pi$  (QGP at  $T > a/2\pi$  and hadrons at  $T < a/2\pi$ ) (*N. Tsegelnik talk*). This confirms the suggested hadronization scenario.

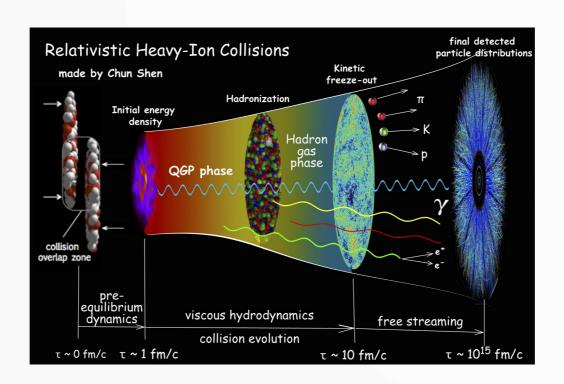


# Hydrodynamics in heavy ion collisions

- In the early stages of heavy ion collisions, the system exhibits **hydrodynamic** properties.
- There are indications that the QGP is a fluid with almost minimal viscosity close to the famous KSS-bound predicted from black hole physics.

$$\frac{\eta}{s} \geqslant \frac{1}{4\pi}$$

 $\frac{\eta}{s} \geqslant \frac{1}{4\pi}$  [Kovtun, Son, Starinets arXiv:hep-th/0405231] [Kovtun, Son, Starinets, PRL, 2005,



https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/

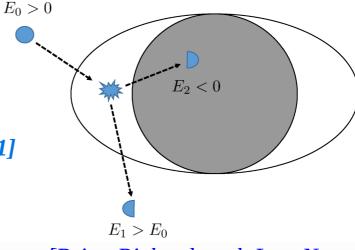
- Do states below the Unruh (Hawking) temperature relate (can be realized or related in some way) to the interior of a black hole?
- Simple arguments in favor this:

$$T < T_U \qquad \qquad \varepsilon < 0$$

Inside the ergosphere the energy is negative

[R. Penrose and R. M. Floyd. Nature, 229:177-179, 1971]

**Superradiance:** extraction of energy from the black hole



[Brito, Richard et al. Lect.Notes Phys. 906 (2015) pp.1-237]

Negative modes inside a black hole (as a source of instability of the classical manifold)

[G. L. Pimentel, A. M. Polyakov, and G. M. Tarnopolsk, Rev. Math. Phys. 30, no. 07, 1840013 (2018)]

$$S_{\text{eff}}(v) = mT\sqrt{1 - V^2} + \dots$$

• Previously, it was hypothesized that the Unruh temperature is the minimal one

[F. Becattini. Phys. Rev., D97(8):085013, 2018.]

#### **Possible explanation:**

Minkowski vacuum is a stable and therefore lower energy state.

[Jin Jia and Pin Yu. Remark on the nonlinear stability of Minkowski spacetime: a rigidity theorem. 4 2023]

Then if we normalize to the Minkowski vacuum

$$T^{\alpha}_{\beta}(\text{Minkowski vacuum}) = 0$$
 — Energy cannot be negative

According to the Unruh effect Minkowski vacuum corresponds to Unruh temperature, so in any accelerated frame choice of  $T_M=|a_M|/(2\pi)$  leads to zero energy

(selecting a specific acceleration value (or temperature) ~ "selecting gauge")

e.g. 
$$\epsilon_{s=1/2} \equiv \langle \hat{T}_0^0 \rangle = \left( \frac{7\pi^2 T^4}{60} + \frac{|a|^2 T^2}{24} - \frac{17|a|^4}{960\pi^2} \right) \quad (T \ge T_U)$$

Since at  $T < T_U$  the energy is negative  $\rightarrow$  the existence of such states would contradict the stability of the Minkowski vacuum?

• Thus, the states below  $T < T_U$  seem to lead to the instability of the Minkowski vacuum



Possible way out: states  $T < T_U$  refer to the region beyond the horizon (inside the black hole).

#### **Outlook**

- Systems with other spins and other horizons?
- -- the relationship with the non-unitarity of the Lorentz group representations allows us to expect a similar effect for any spins except 0. The space, e.g. near the horizon of a black hole is described by the Rindler metric.
- "Tabletop experiment": **analogy** with the **Casimir effect** similar effects for different configurations of conducting plates?
- -- for example, the Casimir wedge is (almost) mathematically identical to the conical space.