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Decay of scalar particles

No anisotropy in the rest frame: isotropic decay
products.
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Decay of particles with spin

H, .
M - magnetic moment

Preferred direction due to spin: anisotropic decay
products

Basis for polarization observables.
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Several random decays
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Averaging over random decays should lead to isotropic
decay products.

Amaresh Jaiswal INFINUM 2025 4



Decay of spin polarized particles
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Averaging over decay of spin-polarized particles should
lead to anisotropic decay products.
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Spin polarization of hadrons in heavy-ion collisions

Spin polarization is a relatively new topic in heavy ion collisions.
e Provides unique opportunity to probe QGP properties.

@ Several measurements of spin polarization of hadrons.

In baryon sector:
o A (spin 1/2): STAR, Nature, 548, 62-65 (2017); HADES; ALICE.
o Q (spin 3/2): STAR, Phys. Rev. Lett. 126, 162301 (2()21).
o Z (spin 1/2): STAR, Phys. Rev. Lett. 126, 162301 (2021).

@ In meson sector:
o K*0: ALICE, PRL 125, 012301 (2020); STAR, Nature, 614, 244-248 (2023).
e ¢ : ALICE, PRL 125, 012301 (2020); STAR, Nature, 614, 244-248 (2023).
o Heavy quarkonium, J/¢ and Y(1S) : ALICE, PLB 815, 136146 (2021).

Global and local polarization measurements.
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Global angular momentum in heavy ion collisions

Angular momentum
&%? 8

Impact parameter direction

Beam direction

[B. Mohanty, ICTS News 6, 18-20 (2020).]
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Angular momentum generation in non-central collisions

Au Au, Vs, = 200 GeV
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[F. Becattini, et al., Phys. Rev. C77, 024906 (2008)]
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Relativistic Heavy-TIon Collisions
made by Chun Shen

Hadronization
Initial energy
density

overlap zone

pre-
gumbmum
ynamics

viscous hydrodynamics

final detected
particle distributions

Kinetic
freeze-out

free streaming

| collision evolution
t~0fm/c t~1fm/c
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T~ 10 fm/c

T ~ 1015 fm/c
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Relativistic spin-hydrodynamics
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Angular momentum conservation: particles

o Angular momentum of a particle with momentum p:
L:fxﬁ = Li:é‘ijkxipj
@ One can obtain the dual tensor:

Lij=eiyju L = Lij = xipj — x; ps

We know that both definitions are equivalent.

o In absence of external torque, = 0, we also have: 0;L;; = 0.

dt

Relativistic generalization: L* = x#p” — x¥p"* and 90,LM = 0.

o This treatment valid for point particles.

e For fluids, particle momenta — “generalized fluid momenta”
The energy-momentum tensor
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Angular momentum conservation: fluid

e The orbital angular momentum for relativistic fluids is defined as
L)\,,u,z/ — x,uT)\z/ . qu)\u
e Keeping in mind the energy-momentum conservation, 9, T*" = 0:
ONLMHY = TH — TV

e Obviously, for symmetric T, orbital angular momentum is
automatically conserved. Classically T symmetric.

e For medium constituent with intrinsic spin, different story
J)\,uu — L)\,MV + S)\,uu
e Ensure total angular momentum conservation: 9yJ»* = 0.

e Basis for formulation of spin Hydrodynamics.
[Florkowski et. al., Prog.Part.Nucl.Phys. 108 (2019) 103709; Bhadury et. al.,
Eur.Phys.J.ST 230 (2021) 3, 655-672]
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Pseudo-gauge transformations

e Total angular momentum is
J)\,uu _ L)\,/u/ + S)\,uu
o With 9,7 =0, and O\L MW = TH — TV,
a}\J)\,,uV -0 — 8)\5)\”“/ — TVE _ Thv
@ Hence the final hydrodynamic equations can be written as
0,T"" =0, ONSMHY = TvH — TR

@ Also holds with the following redefinition
TH — THV 4 1@\ (qy\,ﬁw _ PHA (I)l/)\u)
2

ShuY — gA v Ay + GPZ’“”’\”

e Polarization observables are independent of pseudo-gauge freedom.
[Gallegos et. al., SciPost Phys. 11, 041 (2021); Hongo et. al., JHEP 11 (2021) 150]
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Pseudo-gauge transformations and transport

e Different forms of conserved currents used:
@ Canonical: S[/\’“’], 7)) 4 v
@ Belinfante:  SM =0, TH)
@ de Groot, van Leuween and van Weert (GLW):  SMwl - 7(w)
@ Hilgevoord and Wouthuysen (HW): — SM[w1 plv)

@ Phenomenological: ~ SM ~ gV THY) 4 Tluv]

Belinfante does not retain information about evolution of spin.

Canonical is not most general: anti-symmetry in all three indices.
e Phenomenological not related to canonical via PG transformation.
@ Derivative terms are generated in conserved currents by PG trans.
e Redistribution of spin evolution between SM** and TH!,

@ Issues in counting of transport coefficients for spin evolution.
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Extended phase-space for spin degrees of freedom

The phase-space for single particle distribution function gets
extended f(z,p,s).

The equilibrium distribution for Fermions is given by

1 {/8'175/8#17“
]+1

feq(xapv 5) = 1

exp [ﬁ-p—a—iwzs
Quantities f* = u" /T, a = /T, wy, are functions of x.

a, B*, wt¥: Lagrange multipliers for conserved quantities.
s#: Particle spin, on equal footing with particle momenta p*.
Hydrodynamics: average over particle momenta and spin.

Like T, p, u*, solve for w*” with appropriate initial conditions.

Current state-of-art: Thermal vorticity used as a proxy for w.
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Boltzmann equation and global equilibrium
e Boltzmann equation for distribution function is
p“auf = C[f ]
In equilibrium, C[f] = 0. Global equilibrium condition:
PHOufeq =0
For feq = [exp (6-p —a— %w : 8) + 1]_1, one obtains
Opoe=0; 0'p"+0"p" =0; Ouwpe =0

@ A solution can be obtained as
a = const.; pAF =g+ 1z wg”\; Wpo = const.

The last two solutions leads to

v 1 %4
wh :—5(8“5”—8”5“); Wy — wh' = o

This assumption avoids solving spin-hydro equations.
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Pauli-Lubanski and Polarization

prde P d3;p)

[ dépprdprE, 252

e On freeze-out hypersurface: (P(¢,)) =

E dN;) - 4COSh§/A2Ap e PP g =T, B = uh/T

] D d3 y
> dAIL-(z, p) 1 AL E dSM (w) pP
o By————~ =——¢ ©p——m———
P d3p o “THvp P Bp m
[Florkowski et. al., Prog.Part.Nucl.Phys. 108 (2019) 103709]
@ The spin tensor can be defined as

S)\,/Ju(w) — /deS p>‘3'u“y [f(l‘,p, 8) + f(l'apa 5)]

In absence of hydrodynamic evolution, one uses the ansatz:

1
Wy — Wy = _5(8NBV - ayﬂu)
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Success of thermal vorticity: Global polarization

P (%)

A A
B ¥ ¥ STAR
B O ALICE

Scaled using a, = 0.732

Average of A and A
— Hydrodynamics
——— Parton cascade (AMPT)
——— Hadron cascade (UrQMD)
——— 3-fluid dynamics
—— Chiral kinetic

L\

Vsyy (GeV)

[F. Becattini and M. Lisa, Annu. Rev. Nucl. Part. Sci. 2020. 70:395-423]
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Longitudinal /local polarization and sign problem

. Preliminary STAR data: Takafumi Niida,
vHLLE-+Glissando IS

talk at Chirality workshop 2018
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Similar sin(2¢) structure is observed, with opposite sign!

[Turii Karpenko, Lambda polarization from RHIC BES to LHC]
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Simplified explanation of the quadrupole structure

(c) Sergei Voloshin, SQM2017
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Polarization depends on the the thermal vorticity:

1
W = 75 (OuBy — OuBp)

[Turii Karpenko, Lambda polarization from RHIC BES to LHC]
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A sign problem for the longitudinal component

Quadrupolar structure of longitudinal polarization
in the transverse momentum plane, as predicted.
Spectacular confirmation of hydro predictions...
vet with a flipped sign!

- Hydro initial conditions? (polarization is a sensitive probe
of the initial flow)

- Incomplete local thermodynamic equilibrium for the

spin degrees of freedom (spin kinetic theory)?

- Effect of spin dissipative transport coefficients?

- Effect of initial state fluctuations?

- Effect of decays?

- Error in the calculation
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Z. Ye, T. Niida, Quark Matter 2018

F. B., I. Karpenko, Phys. Rev. Lett. 120
(2018) 012302
S. Voloshin, in SQM 2017




Global equilibrium and thermal vorticity

o Global equilibrium may not be achievable: short fireball lifetime.
o Large spin equilibration time [1907.10750, 2405.00533, 2405.05089, ...].

@ Spin hydrodynamic evolution necessary with appropriate initial
conditions [Singh et. al., 2411.08223].

@ Thermal vorticity is a robust prediction of spin-hydrodynamics.
o Alternate systems for signature of thermal vorticity solution.

o Electrons in graphene near Dirac point: “relativistic” dispersion.
@ No issues with short lifetime for graphene: global equilibrium.

@ Analog of Barnett effect: Thermovortical magnetization [2409.07764].
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Our work on spin hydrodynamics within kinetic theory

e Non-dissipative spin-hydrodynamics:

o W. Flokowski, B. Friman, A. Jaiswal and E. Speranza, Physical
Review C 97, 041901 (2018).

o W. Flokowski, B. Friman, A. Jaiswal, R. Ryblewski and E.
Speranza, Physical Review D 97, 116017 (2018).

e Dissipative spin-hydrodynamics:

o S. Bhadury, W. Flokowski, A. Jaiswal,
A. Kumar, and R. Ryblewski,
Physics Letters B 814, 136096 (2021).

e S. Bhadury, W. Flokowski, A. Jaiswal,
A. Kumar, and R. Ryblewski,
Physical Review D 103, 014030 (2021).

o Relativistic Spin Magnetohydrodynamics: S. Bhadury, W. Flokowski,
A. Jaiswal, A. Kumar, and R. Ryblewski, Phys. Rev. Lett., 129, 192301 (2022).
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Heavy quark spin polarization
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Generation of magnetic field in heavy ion collisions

Reaction

X (defines Wg)
[Adapted from D. Kharzeev @ CPOD 2013.]
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Magnetic field time evolution
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[A. Huang, D. She, S. Shi, M. Huang and J. Liao, Phys. Rev. C 107, 034901 (2023).]
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Heavy quarks in relativistic heavy-ion collisions

Heavy quarks (charm and bottom) has long been recognized as an
excellent probe of transport properties of QCD medium. [Moore and
Teaney PRC 71 (2005) 064904; Rapp and van Hees, Quark Gluon Plasma 4; Banerjee
et. al., PRD 85 (2012) 014510; Das et. al. PLB 768 (2017) 260-264; - - -]

Heavy quarks are primarily generated in the initial hard
scatterings of partons.

Clean probe of the early-stage properties of heavy-ion collisions.

Strong transient magnetic fields produced which are significant
only during the early stages of the collision.

e Heavy quarks: ideal for observable signals of initial magnetic field.

Our proposal:
e Strong magnetic fields induce spin polarization of heavy quarks.

e These induced spin polarization of heavy quarks can be observed in
the polarization of open heavy-flavor hadrons.

e Transverse momentum dependence of open heavy-flavor hadron
polarization: distinctive signal for initial strong magnetic field.
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Heavy quarks: charged, spin-1/2 particles

ﬁ, .
M - magnetic moment

Interaction with magnetic field: H = —ji - B
Magnetic moment and spin: g = s
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No external magnetic field
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Un-aligned spins of heavy quarks.
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Heavy quarks in magnetic field

o o o
PR

Aligned spins in presence of magnetic field.

Spin-polarization of heavy quarks.
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Heavy quarks in QGP

Heavy Quark

Polarized heavy quarks propagates through QGP.
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Rotational Brownian motion

Random rotational motion (orientation and angular velocity) of a
microscopic particle due to thermal fluctuations caused by
collisions with surrounding medium particles.

Rotational Brownian motion problem: first considered by Debye.

For classical spins, the Langevin equation corresponds to the
stochastic Landau-Lifshitz-Gilbert equation

Z—j:sx[ﬁ—kﬁ(ﬂ}—/\sx(sxﬁ)

Here B = vB = —%—H and v is the gyromagnetic ratio u = vs.

S
s x B represents precession dynamics of the system.
&(7) is the random torque on the particle by the medium.

A is the damping coefficient.
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Fokker-Planck equation for spin (s bey and A1 ariv2502.20352]

Fokker—Planck equation corresponding to the stochastic
Landau-Lifshitz-Gilbert equation

5 =g [ (5 (B3]
877/\85 sx|sx|B T8S P

To find: Probability of a spin-polarized particle having an
instantaneous orientation in the direction (6, ¢).

Consider a sphere in spin-space of fixed radius s, i.e., s = (s, 6, ¢):
each point on the sphere represents a different spin orientation.

Choose z-axis to be along B. With Hamiltonian H# = —s - B, only
0 is relevant for polarization.

Assuming all heavy quarks are initially spin polarized along 6 = 6,
direction, i.e., for the initial condition P(6,0) = d(cosf — cos by),
2

1
(cos0) = cosfye 27/, (cos® ) = 3 + 3 e 077
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Heavy baryon and meson polarization

e For baryons, the angular distribution of one of the decay daughter
dN 1

Toosd = 2(1 —I—aB]PB]c050)

@ ap is decay parameter. Using this distribution, one gets

dN - 3
(cosb) = /Cosedcosﬁdcose — |Pg| = £<COSG>

Similarly, for mesons, the angular distribution is
dN 3

90, _ 2
dcost 4 [1 poo + (3p00 1) €08 9}

poo is element of spin density matrix; unpolarized = pgo = 1/3.

Using this distribution, one gets

dN 5 1
2\ _ 2 _ Y 29\ _ =
(cos” 0) —/cos Hdcosedcosﬁ = Apg = 2[(cos 0) 3}

Here Apgp = poo — 1/3
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D*™ meson spin alignment [s. Dey and AJ, arXiv:2502.20352]

0.6 Poo
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e Duration for which heavy quark undergoes Brownian motion:
Rm
T= Q, R ~ 10 fm av. trans. size of fireball
pr
e With v, = E/mg, The quantities in the plot are:
1 5 _ _
poo = 5+ 37/ (eost)| = e/t =y
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Ongoing and future works in this direction

e Fireball assumed to be static with constant average temperature.

e More realistic space-time evolution of the fireball and external
magnetic field necessary.

o Predictions at forward rapidities.

e Calculation of spin relaxation time 7
for heavy quarks.

@ Derivation of an Einstein-Stokes-like
relation between the spin diffusion
coefficient and the dissipative parameters
in spin hydrodynamics.

@ Derivation of rotational Fokker-Planck
equation from Kinetic theory with
non-local collision terms.
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Summary

@ Pseudogauge freedom in the formulation of spin hydrodynamics.
e Polarization observables independent of pseudogauge freedom.

e Pseudogauge freedom and counting of spin transport not settled.
@ Sign problem in longitudinal component of spin polarization.

@ Thermal vorticity ansatz for polarization tensor: not good.

e Evolution with spin-hydrodynamics necessary, some progress.

o Intersting progress in heavy quark polarization measurements.

@ Stochastic spin dynamics is the way forward.

@ Polarization and spin hydrodynamics: exciting times.

o Opportunities for exciting new physics.
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Thank you!
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Relativistic kinetic theory

e Kinetic theory: calculation of macroscopic quantities by means of
statistical description in terms of distribution function.

o Let us consider a system of relativistic particles of rest mass m
with momenta p and energy p°

P’ =+/p? +m?

e For large no. of particles, f(x,p) gives a distribution of the
four-momenta p = p* = (p°, p) at each space-time point.

o f(x,p)A3x A3p gives average no. of particles in the volume
element A3z at point x with momenta in the range (p,p + Ap).
o Statistical assumptions:
o No. of particles contained in A%z is large (N > 1).
o A3z is small compared to macroscopic volume (A%z/V < 1).
e The equilibrium distribution: feq(z,p) =[exp(f-p—§) £ 1]71
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Extended phase-space for spin degrees of freedom

@ The phase-space for single particle distribution function gets
extended f(x,p,s).

@ The equilibrium distribution for Fermions is given by

1 ﬂ-pzﬁup“
]+1

fEQ(x7p73) = 1

exp[ﬁ-p—a—ﬁw:s WS = wy,st
o Quantities g* = u/T, o = /T, wy, are functions of .

e «, [, wt: Lagrange multipliers for conserved quantities.

e sM: Particle spin, similar to particle momenta p*.

o Hydrodynamics: average over particle momenta and spin.

e Classical treatment of spin.
Bhadury et. al., PLB 814, 136096 (2021); PRD 103, 01430 (2021).
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Conserved currents and spin-hydrodynamics

e Express hydrodynamic quantities in terms of f(z,p,s).

1() = [ dPdS pp" [f(o.p.5) + Flop,o)] 2 avis
N#(:l:) = /deS pH [f(x’pa S) - f(l"apa S)] /’;};
Ih
S () = /deS P [f(z,p,5) + fla.p.s)] | n
\ t
__dp _ds > \ 4
dP = B, (2r)?’ ds = mﬂ_—a d(s-s+ 8)0(p-s) \ ‘nl"
—9- 2_1(1 )_§ u:iwaﬁ
/dSQ, ﬁ72 2+1 =7 s_2me DvSas

o (lassical treatment of spin: internal angular momentum.
e Equations of motion: 9,7"" =0, J,N* =0, O\SMH = ().

e Non-dissipative spin hydrodynamics: f(x,p,s) = feq(z, D, s).
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Dissipative Spin—hydrodynamics Bhadury et. al., PLB 814, 136096 (2021)

Introduce out-of-equilibrium distribution function f(z,p,s).

e Use Boltzmann equation for evolution of f = fo, +9df.

p“@uf = C[f]

Employ relaxation-time approximation for collision kernel.

f_feq

Teq

Clf] = —(u-p)

Solve assuming small departure from equilibrium, § f/fe, < 1.
e First order dissipative spin hydrodynamics for d f = ¢ fi.

e Relativistic Navier-Stokes analog of spin-hydrodynamics.
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Dissipative effects

» Shear viscosity: fluid’s resistance to shear forces

—

» Bulk viscosity: fluid’s resistance to compression
e Charge/heat conductivity: fluid’s : M

resistance to flow of charge/heat. -\fﬁ?
@ Dissipation to spin current new: y

H T.>T
Kubo formalism necessary.
Amaresh Jaiswal INFINUM 2025 45
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Spin Magnetohydrodynamics Bhadury et. al., PRL 129, 192301 (2022)

The particle four-current and its conservation is given by

N¥ = nut 4+ n*, OuN* =0

Total stress-energy tensor of the system: TH = T} + T} + Tl
T = eutu” — (P + II) AW + 7,
TH — _TTFuY — P e

int

14 v 1 174
Thi = —FMF", + 29" F* Fag

Maxwell’s equation: 9, H* = J” and HM = FM + M",

0Tt = F¥, I

o Current generating external field, J# = Jf“ + JE . where J!' = qN*,
6;LTW = —fext> ext = Flad
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Equations of motion

e Divergence of matter part of energy-momentum tensor,
DT = FHJE + 3 (04 F*) My,
@ Next, consider total angular momentum conservation:
JMY Ay ghw
e In presence of external torque its divergence leads to,

Apy 24 u vt
8>\J - Text? Text — L ext — T Jext

The orbital part of angular momentum and its divergence is

L>\"“‘V — quAV _ xVT)\LL’ 8,\L*’“” B

Text

Spin part of the total angular momentum is conserved
HRSM =0

Along with particle four-current conservation, 9, N* = 0.

Amaresh Jaiswal INFINUM 2025
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Boltzmann equation

e Boltzmann equation (BE) in relaxation-time approximation (RTA)

f_feq

Teq

0 0 0
( 8—a+mfaa—+ Saﬁa (w)f—C[f]——(wp)

@ The force term is:

1
F& = a Faﬁpg + 3 (80‘F67) My, m® = ys*?
m

There is a “pure” torque term:
SaB _ o pile 8 2 (X _ i)p 9l Bl
) m)

e We ignore this “pure” torque term for now.

Employ the Boltzmann equation to obtain § f = d f;.

e Evolution equations for spin-magnetohydrodynamics.
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Hydrodynamic equations from kinetic theory

@ Impose Landau frame and extended matching conditions
v v Auv
u, T = eu”, €=€eq, N =Teq, UNISTH =0

@ Zeroth, first and “spin” moment of the RTA collision vanishes

/deSC[f]:/deSp“C[f] :/deSs’“’C’[f] —0

Using definitions of hydro quantities, these moments of BE gives
1
OuN! =0, O,T}" = FI,Jf + 5 (0"F") Mya, O3S =0

e Same equations as obtained from macroscopic arguments.

Polarization/magnetization emerge naturally at gradient order.

o Boltzmann equation — dissipative spin-magnetohydodynamics.
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Einstein-de Haas and Barnett effects

@ One can define the polarization-magnetization tensor as

M“V:m/deSm”” (f—f)

@ The equilibrium polarization-magnetization tensor is

ML =m / dPAS MM (feq — feq)

Magnetic dipole moment m*” = ys*”.

x: resembles the gyromagnetic ratio.

Integrating over the momentum and spin degrees of freedom,
Még’ =a;w* + ay u[“w,w"h

e In global equilibrium, w”” corresponds to rotation of the fluid.

Rotation produces magnetization (Barnett effect) and vice versa
(Einstein-de Hass effect).
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