Constraints on the nuclear Equation of State: From terrestrial experiments to neutron star observations

Walaa M. Seif BLTP-JINR Cairo University ASRT-EGYPT

INFINUM Workshop BLTP, JINR, RUSSIA May 2025 Laboratory experiments constraining the Nuclear Equation of State (EoS) of symmetric/asymmetric nuclear matter

- Heavy-Ion Collisions- HICs (RHIC, FAIR, NICA) Probes high-density matter (1–5ρ₀) via flow, π/K production
- ➢ Neutron Skin Measurements (PREX/CREX) Parity-violating e⁻ scattering on ²⁰⁸Pb/⁴⁸Ca → symmetry energy (J, L)
- ➤ Giant Resonances Isovector IVGDR dipole R (Texas A&M, RCNP) → Sym. energy Isoscalar ISGMR monopole resonance → Incompressibility.
- ➤ Accurate Masses and radii of Neutron-rich and Exotic Nuclei Structure, stability, Surface energy and diffuseness (FRIB,RIKEN,ISOLDE) → symmetry energy at low densities
- ➢ Electroweak Scattering (Jefferson Lab, GANIL)
 Charge distributions, transfer reactions → isospin asymmetry effects

Neutron stars and astrophysical observable constraining the EoS

Observable	Probes EoS at	Missions/Events	
Mass-Radius	~ 1-10 $ ho_0$	NICER, radio timing	
Tidal Deformability	~1-3 <i>ρ</i> ₀	LIGO/Virgo (GW170817)	
Moment of Inertia	Core density (up to 10 ρ_0)	Pulsar binaries	
Cooling	Core composition	X-ray telescopes (Chandra)	
GW Mergers	High density (>3 ρ_0)	LIGO, Einstein Telescope	

- **\checkmark** The particle fractions in npeµ matter of NS core at β-equilibrium.
- ✓ The core-crust transition density and pressure.
- The crustal fraction of the moment of inertia.
- ✓ The URCA process in NS (The NS cooling).

Nuclear Models and forces

The non-relativistic Hartree–Fock approach with Semi-microscopic Density-dependent M3Y interaction Skyrme NN interaction Argonne AV18 interaction Gogny force Isospin- and momentum-dependent MDI interactions

RMF model with different parameterizations NL1, NL2, NL3, NL-SH, FSU-Gold, DD ...

Phenomenological EOSs : with a reasonable fit to empirical masses and radii of stable nuclei, or NS structure

Saturation and symmetry properties of isospin asymmetric nuclear matter

ANM energy density

The **quadratic terms** are sufficient to describe ANM up to $2\rho_0$. What about **supra-saturation densities**?

Isospin asymmetry dependence of ANM saturation properties

The more neutron-rich **ANM** is the **less bound** and less stiff one, over narrower bound density range.

0.15

0.14

9 0.13 9 0.12

ਕ 4 0.11

0.1

0.09

0.08

0.07

0.06

CDM3Y-240 Paris

Saturation properties of hot ANM

NPA 1008, 122142 (2021) Helmholtz free energy per nucleon

$$F_A(T,\rho,I) = \frac{F(T,\rho,I)}{A} = E_A(T,\rho,I) - TS_A(T,\rho,I).$$

- Both the repulsive internal energy and the negativity of the free energy increase with *T*, leading to less bound ANM, with a larger entropy.
- Increasing the density increases the free energy, and the nucleons become less free in phase space, with less entropy.

Conclusions I

- Based on the semi-realistic M3Y-Paris (Reid) NN interactions, the isospin asymmetry terms up to I⁸ (with only 18 characteristic quantities) are needed to describe reasonably the different ANM saturation properties.
- Up to 4ρ₀, some properties, such as ANM (PNM) energy per nucleon, are well expressed by their expansion up to only I². NPA 878, 14(2012)

Increasing the temperature (<T_c) of hot ANM

[NPA1008, 122142(2021)]

- decreases its equilibrium binding energy, shifting it to higher equilibrium density,
- increases its attractive saturation free energy, shifting it to lower ρ.

∴ <u>The hotter ANM is less bound</u>.

- Increasing the isospin-asymmetry (ANM) decreases both the saturation binding- and free-energy, and their corresponding density.
- The saturation binding (free energy) disappears at T>(14-17) MeV.
 I_{max}=0.81±0.02 is indicated for a semi-cold bound ANM having saturated free energy.

Structure of Neutron Stars and massive pulsars

Observations: Electromagnetic emissions in all bands, (infrared, optical, ultraviolet, X-ray, gamma-ray), Neutrinos, and **Gravitational waves**.

From NN interaction to NS structure CDM3Y-Paris (Reid) Eff. NN interaction NS **Structure** properties Energy density and pressure of npeµ matter $E_A(\rho, x_p) = \frac{3\hbar^2 k_F^2 \left[(2 - 2x_p)^{5/3} + (2x_p)^{5/3} \right]}{20 m} + \frac{\rho}{2} \left\{ F_0(\rho) J_{00}^D + (1 - 2x_p)^2 F_1(\rho) J_{01}^D \right\}$ $+ \frac{\rho}{8} \int \left[F_0(\rho) v_{00}^{Ex} (B_0(x_p, r))^2 + F_1(\rho) v_{01}^{Ex} (B_1(x_p, r))^2 \right] \mathrm{d}\vec{r},$ $B_0(x_p, r) = (2 - 2x_p)\hat{J}_1(k_{Fn}r) + 2x_p\hat{J}_1(k_{Fp}r), \qquad P(\rho, x_p, x_e, x_\mu) = P_b(\rho, x_p) + \sum P_l(\rho, x_l),$ l = e.u $B_1(x_p, r) = (2 - 2x_p)\hat{J}_1(k_{Fn}r) - 2x_p\hat{J}_1(k_{Fp}r).$ $P_b(\rho, x_p) = \rho^2 \frac{\partial E_A(\rho, x_p)}{\partial \rho},$ **Tolman-** $P_l(\rho, x_l) = \mu_l \ \rho \ x_l - \varepsilon_l(\rho, x_l).$ **Oppenheimer-** $\frac{\mathrm{d}P(r)}{\mathrm{d}r} = -\frac{G \ \varepsilon(r) \ M(r)}{c^2 r^2} \left(1 + \frac{P(r)}{\varepsilon(r)}\right) \left(1 + \frac{4 \ \pi \ r^3 P(r)}{c^2 M(r)}\right) \left(1 - \frac{2 \ GM(r)}{r \ c^2}\right)^{-1}$ Volkoff equations at $\frac{\mathrm{d}M(r)}{1} = \frac{4\pi r^2 \varepsilon(r)}{r^2}$ **hydrostatic** dr equilibrium

Mass-Radius relation of NS

The CDM3Y-K EOSs ($K_0 = 230-270$ MeV) verify most of the investigated recent constraints on the masses and radii of NS, estimating radius of 11.67 ± 0.34 km for NS of 1.4 M_{\odot} mass, and M_{max} (NS) of 1.93 ± 0.21 M_{\odot} .

The **accumulated gravitational mass** and **speed of sound** inside NS (*M*_{max})

- The central speed of sound approaches the speed of light for the EOSs of K₀ > 270 MeV.
- ➤ The density at which the speed of sound relative to c starts to break its conformal limit (1/ √3) decreases with increasing the stiffness of the NM in NS.

- ✓ The softer EOS indicates less radius of vanishing pressure, which in turn indicates a less NS radius.
- ✓ The estimated maximum compactness (GM_{max}/Rc²) of NS increases with increasing the stiffness of its NM.

The symmetry-energy coefficients, up to its eighth order (E_{sym8}) contribute to the proton fraction in β stable NS matter at different NM densities, and to the core-crust transition density and pressure.

The liquid core - solid crust
 ✓ transition density,
 ✓ pressure, and
 ✓ proton fraction

increase with temperature.

PRC 106, 015801 (2022)

➢Compactness

It measures how strongly spacetime is curved near the NS surface.

 $\mathcal{C} = \frac{\text{NS gravitational radius (Schwarzschild radius)}}{\text{actual } R \text{ (NS)}} = \frac{R_g}{R} = \frac{G M}{c^2 R}.$

 \checkmark A more compact NS \Rightarrow a stronger gravitational field near its surface.

✓ Extremely dense objects \Rightarrow C=0.1 – 0.3.

Tidal deformability

It quantifies how much NS is deformed by an external tidal gravitational field (such as that of its companion star in a binary system).

$$\Lambda = \frac{2}{3} \frac{\text{NS Love number } (k_2)}{(Compactness)^5} = \frac{2 k_2}{3 C^5}.$$

✓ $k_2 \equiv$ how the NS internal structure responds to tidal force. It is defined by the induced quadrupole moment (Q_{ij}) and the external tidal field E_{ij} , $Q_{ij} = -k_2 R^5 E_{ij}/G$.

✓ A larger Λ means more easily deformed NS of less compactness.
✓ It is measured in GW observations (like from binary NS mergers).

Tidal deformability and compactness of neutron stars and massive pulsars

The EoSs from CDM3Y-230 to CDM3Y-330, together, yield more limited ranges of radii and tidal deformability for NS objects, than their empirically inferred ranges.

Compactness of NS

The compactness brings further constraints on the mass-radius relation for NSs, determines their tidal deformability, and influences the propagation of their emissions.

- The indicated compactness of light NS (< M_o) is almost constant with the incompressibility of the employed EOS.
- The sensitivity of the NS compactness increases with its mass, where stiffer NM anticipates less compactness.

The largest compactness associated with the heaviest NS (M_{max}) for a given EOS increases with its incompressibility.

Tidal Deformability

- The behavior of Λ
 with K₀ reverses the
 behaviour of C with
 it.
- Λ(M<M_☉) is almost independent of the stiffness of the EOS.
- Λ for the heavier NSs increases with K₀, keeping its order of magnitude unchanged.

- The order of magnitude of the indicated A decreases with increasing the NS mass.
- > The minimum indicated tidal deformability reached for a NS of M_{max} , based on a certain EOS, decreases with K_0 , spanning three orders of magnitude over the range from K_0 =150 MeV to 330 MeV.

Density curvature, skewness, and kurtosis of the nuclear symmetry energy and their impact on the compactness and tidal deformability of neutron stars

PRC 111, 0358

PRC 111,	
035806	
(2025)	

		NS mass		The causality	Threshold proton fraction for	SNM-PNM pressure, energy, and symmetry	Combined constraints of	Other studies from nuclear structure and reaction, NM,
	M⊙	1.4 M _☉	$2 \mathrm{M}_{\odot}$	condition	DU	energy	NM and NS	and NS
<i>K</i> ₀ (MeV) ≥160	≥160	≥200	≥255	≤300	≼280 [40]	$240 \leqslant K_0 \leqslant 250 \ [41]$	260 ± 20	$K_0^{\exp/\text{theo}} = 230 \pm 20$ [86]
								283 ± 32 [79]
								258 ⁺² ₋₂₄ [87]
								238 ± 22 [88]
K ₂ (MeV)	$\leqslant -10$	≤ – 17	≤ -28	≥ - 36	≥ - 32	$-27 \leq K_2 \leq -24$	-28 ± 4	$K_2^{\exp(\text{theo})} = -81 \pm 47 \ [88]$
								-128 ± 103 [92]
								-107 ± 88 [93]
								-50^{+90}_{-180} [23]
								-100 ± 100 [86]
								-120^{+80}_{-100} [87]
								$-200 \leqslant K_2^{\text{theo}} \leqslant 50$ [81]
K4 (MeV)	≥ - 1.03	≥ -0.84	≥ - 0.60	≤ - 0.38	≤ -0.48	$-0.65 \le K_4 \le -0.62$	-0.57 ± 0.09	$-5.8 \leq K_{4}^{theo} \leq 10.77$ [97]

PRC 111, 035806 (2025)

	M _o	NS mass $1.4 \mathrm{M}_{\odot}$	2 M _☉	The causality condition	Threshold proton fraction for DU	SNM-PNM pressure, energy, and symmetry energy	Combined constraints of NM and NS	Other studies from nuclear structure and reaction, NM, and NS
K_{r2} (MeV)	≤ - 43	≤ - 139	≤ - 242	≥ - 307	≥ - 281	$-233 \leqslant K_{\tau 2} \leqslant -215$	-248 ± 33	-239 ± 56 [89]
								-370 ± 120 [97]
			1		1			$-517 \leqslant K_{\tau 2}^{\text{theo}} \leqslant -220$ [94]
		V = 0	$(2a)^2 a$	$2 r^{2} d^{2} E_{A}(\rho, I)$				$-742 \leqslant K_{\tau 2}^{\text{theo}} \leqslant -228 \ [96]$
$\mathbf{K}_{0I} \equiv (5\rho_{0I})^{-} \frac{d\rho^{2}}{d\rho^{2}}\Big _{\rho_{0I}}$							-355 ± 30 [95]	
							-400 ± 100 [86]	
	$V(a = I = 0) + V = I^2 + V = I^4 + V = I^6 + I^2$					-595 ± 245 [79]		
		= r	$x_0(\rho_0, I)$	$= 0) + \Lambda_{t}$	$2I + \Lambda_{\tau 4}$	$I + \Lambda_{\tau 6}I$	+••••	-550 ± 100 [80]
	-							-500^{+125}_{-100} [83]
K74 (MeV)	≥ - 399	≥ - 175	≥ - 10	≤54	≤34	$-46 \le K_{\tau 4} \le -21$	-46≤ <i>K</i> ₇₄ ≤34	$-32 \le K_{-4}^{\text{theo}} \le 347$ [97]
$K_{\tau 6}$ (MeV)	≼478	≤74	≤ - 42	≥ - 47	≥ - 46	$-39 \le K_{\tau 6} \le -31$	-38 ± 6	14 5 5 5
$K_{\tau 2}$	$= K_2$	– 6L	$-\frac{L\zeta}{v}$	20				
			N	0 ($0I^2 - 0.I_{\odot}$	$0.1 I^2 I_0$	$\pm 20^{6} K_{2} I_{2}$	$161^{2}\Omega_{0} = 1^{2}\Omega_{0}^{2}$
			$K_{-4} = K$	$4 - 6L_{4} + -$	$L = \chi_0 L_4$	-22 + 10	+ 220n2L 1	
				4	K_0	1	$2K_0^2$	$2K_0^3$

Increasing K_0 and the fourth-order skewness coefficient Q_4 , and decreasing the negativity of the isoscalar Q_0 and kurtosis H_0 and that of the isovector K_4 , I_2 , G_2 and $K_{\tau 4}$ coefficients

> Increase the estimated NS radius Tidal deformability Tidal Love number of NS ($M \ge M_{\odot}$) The central speed of sound (v_s) NS ($\le 1.4 M_{\odot}$) The predicted M_{max} (NS) based on a given EOS The corresponding maximum compactness Surface redshift z_{surf} (M_{max}),

Indicate less compactness z_{surf} of a given NS less minimum tidal Love number $k_{2,\min}(M_{max})$ Tidal deformability $\Lambda_{\min}(M_{max})$.

► Increasing the I_0 , G_0 , Q_2 , K_6 , H_2 and $K_{\tau 6}$ (decreasing the negativity of the K_2 and $K_{\tau 2}$) coefficients inverts the behavior of the NS quantities with K_0 and with the aforementioned coefficients.

Increasing the stiffness of ANM is found to

- increase the core-crust transition density and slightly, the transition proton-fraction,
- ➢ but to decrease the abundance of the proton, muon, and electron over npeµ core matter of NS, as well as the estimated central density.
- This in turn determines the possibility and optimum conditions for direct URCA cooling process in β-stable NS matter.

- * The EOS of the isospin asymmetric nuclear matter and its symmetry properties are still largely unknown.
- **×** The results are model dependent !

References

- [1] W. M. Seif, A. S. Hashem, and H. A. Abualhamd, PRC 111, 035806 (2025).
- [2] W. M. Seif, A. S. Hashem, and H. A. Abualhamd, J. Phys. G (2024).
- [3] W. M. Seif and A. R. Abdulghany, Phys. Rev. C 108, 024308 (2023).
- [4] W. M. Seif and A. S. Hashem. Scientific Reports 13, 17592 (2023).
- [5] W. M. Seif, A. S. Hashem, and Y. Ramsis, Phys. Rev. C 106, 015801 (2022).
- [6] W. M. Seif, A. S. Hashem, and R. N. Hassanien, Nucl. Phys. A 1008, 122142 (2021).
- [7]W. M. Seif, Hisham Anwer, and A.R. Abdulghany, Ann. Phys. 401, 149(2019).
- [8] W. M. Seif, J. Phys. G: Nucl. Part. Phys. 40,105102 (2013).
- [9] W. M. Seif, Nucl. Phys. A 878, 14 (2012).
- [10] W. M. Seif, Phys. Rev. C 74, 034302 (2006).

