Applications of dual symmetries of QCD

Roman N. Zhokhov IZMIRAN, IHEP

International Workshop "Infinite and Finite Nuclear Matter" (INFINUM 2025) 12–16 May 2025

International Workshop Infinite and Finite Nuclear Matter (INFINUM-2025)

May 12 - 16, Dubna, JINR

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

The work is supported by

► Russian Science Foundation (RSF)

 Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики

QCD Dhase Diagram

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- neutron star mergers

QCD Dhase Diagram and Methods

Methods of dealing with QCD

- ▶ Perturbative QCD
- First principle calculation

 lattice QCD (see talk by
 V. Braguta, A. Roenko and D.
 Stepanov)
- ► Effective models
- ► DSE, FRG
- ► Gauge/Gravity duality (see talk by Nguyen Hoang Vu)

QCD Phase Diagram

More external conditions to QCD

More than just QCD at (μ, T)

- more chemical potentials μ_i
- ▶ magnetic fields
- rotation of the system $\vec{\Omega}$ (see talk by V. Braguta)
- acceleration \vec{a}

(see talks by V. Zakharov, G. Prokhorov and D. Stepanov)

 finite size effects (finite volume and boundary conditions)

More external conditions to QCD

- more chemical potentials μ_i
- ▶ magnetic fields
- rotation of the system Ω
 (see talk by V. Braguta)
- acceleration \vec{a}

(see talks by V. Zakharov, G. Prokhorov and D. Stepanov)

 finite size effects (finite volume and boundary conditions)

► Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p).$

 Neutron stars, intermediate energy heavy-ion collisions, neutron star mergers

Figure: taken from Massimo Mannarelli

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3 q = \nu\left(\bar{q}\gamma^0\tau_3 q\right) \qquad n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

Chiral imbalance

Chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L$$
$$\mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is $\mu_5 \bar{q} \gamma^0 \gamma^5 q \label{eq:mass_star}$

 $\mu_5^u \neq \mu_5^d$ and $\mu_{I5} = \mu_5^u - \mu_5^d$

Term in the Lagrangian

$$\frac{\mu_{I5}}{2}\bar{q}\tau_3\gamma^0\gamma^5q = \nu_5(\bar{q}\tau_3\gamma^0\gamma^5q)$$

$$n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$$

▶ Recalling the dualities of phase diagram

 Dualities in QCD and QC₂D from first principles

- ▶ Wide swathes of application of dual
 - Speed of sound in quark matter with different properties
 - ▶ Inhomogeneous phase shown in functional approach

Recall that in NJL model in $1/N_c$ approximation or in the mean field there have been found dualities

(It is not related to holography or gauge/gravity duality)

Chiral symmetry breaking \iff pion condensation

Isospin imbalance \iff Chiral imbalance

Duality in phase diagram

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle\bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

Duality in phase diagram

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

$$\Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$$

$$\mathcal{D}: M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

- ► A lot of densities and imbalances baryon, isospin, chiral, chiral isospin imbalances
- Finite temperature $T \neq 0$
- Physical pion mass $m_{\pi} \approx 140 \text{ MeV}$
- ► Inhomogeneous phases (case)

$$\langle \sigma(x) \rangle = M(x), \quad \langle \pi_{\pm}(x) \rangle = \pi(x), \quad \langle \pi_3(x) \rangle = 0.$$

 Inclusion of color superconductivity phenomenon

Dualities in QC_2D

Much richer duality picture was found in the phase diagram of two colour \mathbf{QCD}

$$L_{NJL} = i\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi + \overline{\psi}\mathcal{M}\psi +$$

$$G\left\{(\bar{\psi}\psi)^2 + (i\bar{\psi}\vec{\tau}\gamma^5\psi)^2 + (i\bar{\psi}\sigma_2\tau_2\gamma^5\psi^C)(i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi)\right\}$$

where

$$\mathcal{M} = \frac{\mu_B}{3}\overline{\psi}\gamma^0\psi + \frac{\mu_I}{2}\overline{\psi}\gamma^0\tau_3\psi + \frac{\mu_{I5}}{2}\overline{\psi}\gamma^0\gamma^5\tau_3\psi + \mu_5\overline{\psi}\gamma^0\gamma^5\psi$$

Possible phases and their Condensates

$$\sigma(x) = -2H(\bar{q}q), \qquad \Delta(x) = -2H\left[\overline{q^c}i\gamma^5\sigma_2\tau_2q\right]$$
$$\vec{\pi}(x) = -2H(\bar{q}i\gamma^5\vec{\tau}q), \qquad \Delta^*(x) = -2H\left[\bar{q}i\gamma^5\sigma_2\tau_2q^c\right]$$

Condensates and phases

$$\begin{split} M &= \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle, & \text{CSB phase: } M \neq 0, \\ \pi_1 &= \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle, & \text{PC phase: } \pi_1 \neq 0, \end{split}$$

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle, \qquad \text{BSF phase:} \quad \Delta \neq 0.$$

-

(I) $\mathcal{D}_1: \quad \mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow \Delta, \quad \text{PC} \longleftrightarrow \text{BSF}$ (II) $\mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1, \quad \text{PC} \longleftrightarrow \text{CSB}$ (III) $\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \Delta, \quad \text{CSB} \longleftrightarrow \text{BSF}$ Structure of the phase diagram of two-color QCD 19

The phase diagram of (μ, ν, μ_5, ν_5)

The phase diagram is foliation of dually connected cross-section of (μ, ν, ν_5) along the μ_5 direction

 $\mathcal{M} \leftrightarrow \mathcal{V}_{n}$ $\partial \leftrightarrow \partial_{r}$ u ↔ ı)

Lagrangian of two colour QCD can be written in the form

$$\mathcal{L} = i \overline{\Psi} \gamma^{\mu} D_{\mu} \Psi$$

where $D_{\mu} = \partial_{\mu} + igA_{\mu} = \partial_{\mu} + ie\sigma_{a}A^{a}_{\mu}$
 $\Psi^{T} = \left(\psi^{u}_{L}, \ \psi^{d}_{L}, \ \sigma_{2}(\psi^{u}_{R})^{C}, \ \sigma_{2}(\psi^{d}_{R})^{C} \right)$
Flavour symmetry is $SU(4)$

Pauli-Gursoy symmetry

Effective NJL model in two colour

Two colour

effective NJL model

Construction of two color NJL model

$$Q \in so^{\pm}(4, C), \quad Q^{T} = -Q$$

 $so^{\pm}(4, C) = \left\{ Q \in so(4, C) : *Q = \pm Q^{*} \right\}$

$$A \in SU(4) : A^{\dagger}A = 1$$

$$\rho(A) : \quad \rho(A)Q = A^{T}QA \in so^{+}(4, C)$$

$$N(Q) = \frac{1}{4} tr(Q^{\dagger}Q), \qquad N\left(\rho(A)Q\right) = N(Q)$$

N(Q) is invariant with respect to SU(4)

Construction of two color NJL model

$$Q = \xi^i \Sigma_i$$

$$\begin{split} \Sigma_1 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \Sigma_2 &= \begin{pmatrix} \tau_2 & 0 \\ 0 & \tau_2 \end{pmatrix}, \ \Sigma_3 &= \begin{pmatrix} 0 & i\tau_1 \\ -i\tau_1 & 0 \end{pmatrix}, \\ \Sigma_4 &= \begin{pmatrix} i\tau_2 & 0 \\ 0 & -i\tau_2 \end{pmatrix}, \ \Sigma_5 &= \begin{pmatrix} 0 & i\tau_2 \\ -i\tau_2 & 0 \end{pmatrix}, \ \Sigma_6 &= \begin{pmatrix} 0 & i\tau_3 \\ -i\tau_3 & 0 \end{pmatrix} \end{split}$$

N(Q) is invariant with respect to SU(4)

$$\sum_{i=1}^{6} \xi_i^{\prime 2} = \sum_{i=1}^{6} \xi_i^2$$

 $SU(4)/Z_2 \approx SO(6)$

$$\bar{\Psi}^C \sim \Psi^T \to \Psi^T \omega^T$$

$$\omega \in SU(4), \quad \Psi \to \omega \Psi, \quad \bar{\Psi}^C \to \bar{\Psi}^C \omega^T$$

$$\bar{\Psi}^C \vec{\Sigma} \, \Psi \to \bar{\Psi}^C \omega^T \vec{\Sigma} \, \omega \, \Psi$$

$$\bar{\Psi}^C \xi^i \Sigma_i \Psi \to \bar{\Psi}^C \omega^T \xi^i \Sigma_i \omega \Psi = \bar{\Psi}^C \xi'^i \Sigma_i \Psi = \bar{\Psi}^C \xi^i \Sigma_i' \Psi$$

 $\xi'^{i} = \Omega^{i}_{j}\xi^{j}, \ \Omega \in SO(6) \quad \Psi^{C}\Sigma_{i}\Psi \to \Omega_{ij}\Psi^{C}\Sigma_{j}\Psi, \ \Omega \in SO(6)$

$\bar{\Psi}^C \vec{\Sigma} \Psi \in SO(6)$

$|\bar{\Psi}^C \vec{\Sigma} \Psi|^2$ and $(\bar{\Psi}^C \vec{\Sigma} \Psi)^2 + h. c.$

$$\mathcal{L} = i\bar{\Psi}\gamma^{\mu}\partial_{\mu}\Psi + \tilde{G}_1|\bar{\Psi}^C\vec{\Sigma}\Psi|^2$$

$$+\tilde{G}_2\left[(\bar{\Psi}^C\vec{\Sigma}\Psi)^2+h.c.\right]$$

Symmetric under SU(4)

$$\frac{\mu_B}{3}\overline{\psi}\gamma^0\psi + \frac{\mu_I}{2}\overline{\psi}\gamma^0\tau_3\psi + \frac{\mu_{I5}}{2}\overline{\psi}\gamma^0\gamma^5\tau_3\psi + \mu_5\overline{\psi}\gamma^0\gamma^5\psi$$

$$\mathcal{M} = \mu \Psi^{\dagger} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \Psi + \frac{\mu_I}{2} \Psi^{\dagger} \begin{pmatrix} \tau_3 & 0 \\ 0 & -\tau_3 \end{pmatrix} \Psi + \frac{\mu_{I5}}{2} \Psi^{\dagger} \begin{pmatrix} \tau_3 & 0 \\ 0 & \tau_3 \end{pmatrix} \Psi + \mu_5 \Psi^{\dagger} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Psi$$

 $\mu \Psi^{\dagger} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \Psi \quad \longleftrightarrow \quad \frac{\mu_I}{2} \Psi^{\dagger} \begin{pmatrix} \tau_3 & 0 \\ 0 & -\tau_3 \end{pmatrix} \Psi$

 $\mathcal{D}_{\mathrm{I}}: \quad \left(\begin{array}{c} \psi_L^d \\ \sigma_2(\psi_L^C)^d \end{array}\right) \to i\tau_1 \left(\begin{array}{c} \psi_L^d \\ \sigma_2(\psi_L^C)^d \end{array}\right) \quad \mu \leftrightarrow \nu$

Duality structure in QC_2D

Dual properties in three colour QCD

$\mathcal{D}_{\mathrm{II}}: \quad \langle \bar{\psi}\psi\rangle \longleftrightarrow \langle i\bar{\psi}\gamma^5\tau_1\psi\rangle, \quad M \longleftrightarrow \pi, \quad \nu \leftrightarrow \nu_5$

From first principles

Applications of dual symmetries: Speed of sound 32

Speed of sound c_s^2

Thermodynamic properties could be calculated in lattice QCD

A. Bazavov et al. [HotQCD], Phys. Rev. D 90 (2014), 094503

There was discussed bound from holography

A. Cherman, T. D. Cohen and A. Nellore, Phys. Rev. D 80 (2009), 066003

Two possible scenario of speed of sound at non-zero baryon density

taken from S. Reddy et al, Astrophys. J. 860 (2018) no.2, 149

Sound speed in QCD with non-zero baryon density 36

- EOS with continuous c_s^2 consistent not only with nuclear theory and perturbative QCD, but also with astrophysical observations.
- EOS with sub-conformal sound speeds, i.e., $c_s^2 < 1/3$ are possible in principle but very unlikely in practice
- L. Rezzolla et al, Astrophys.J.Lett. 939 (2022) 2, L34

Sound speed in FRG approach

 Sound speed squared has been obtained from FRG approach

Phys.Rev.Lett. 125 (2020) 14, 142502

$$Z = \int D[gluens] D[guarks] e^{-N_{gluens}^{F}}$$

$$Z = \int D[gluens] Det D(M) e^{-N_{gluens}^{F}}$$

It is well known that at non-zero baryon chemical potential μ_B lattice simulation is quite challenging due to the sign problem

complex determinant

$$Det(D(\mu))^{\dagger} = Det(D(-\mu))$$

For isospin chemical potential μ_I

$$Det(D(\mu_I))^{\dagger} = Det(D(\mu_I))$$

Sound speed in QCD with non-zero isospin density 39

 μ_I/m_{π}

Sound speed in QCD with non-zero isospin density 40

 Sound speed squared has been obtained from lattice QCD simulations for QCD with non-zero isospin μ_I for values of μ_I up to 10m_π

R. Abbott et al. [NPLQCD], Phys. Rev. D 108, no.11, 114506 (2023)

Duality between chiral symmetry breaking and pion condensation

$$\mathcal{D}: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5$$

The TDP of the quark matter $\Omega(T, \mu, \nu, \nu_5, \mu_5, | M, \pi) = inv$

The speed of sound $c_s^2 = \frac{dp}{d\epsilon}$

$$\Omega(T,...) \Longrightarrow c_s^2(T,...)$$

The speed of sound
$$c_s^2 = \frac{dp}{d\epsilon}$$
, $\Omega(T, ...) \Longrightarrow c_s^2(T, ...)$
 $\Omega(T, ..., \nu) = \Omega(T, ..., \nu_5) \Longrightarrow c_s^2(T, ..., \nu) = c_s^2(T, ..., \nu_5)$

Dualities: weak dualities

Duality

$$\nu_5 \longleftrightarrow \mu_5, \quad M \neq 0, \quad \langle \pi \rangle = \langle \Delta \rangle = 0$$

Speed of sound in QCD: First principles

Speed of sound in QCD: Effective models

Two colour QCD case QC_2D

No sign problem in SU(2) case at $\mu_B \neq 0$ $(Det(D(\mu)))^{\dagger} = Det(D(\mu))$

Sound speed in two color QCD

 Sound speed squared has been obtained from lattice QCD simulations for two color QCD

> E. Itou and K. Iida, PoS LATTICE2023, 111 (2024); PTEP 2022 (2022) no.11, 111B01

Duality structure in QC_2D

Duality structure in QC_2D

Sound speed in QC₂D at μ_5 : skematic

Duality $\nu_5 \longleftrightarrow \mu_5$

was shown in two color effective model as well

Sound speed squared C_s for QCD with non-zero chiral imbalance μ_5 only in the framework of effective model M_{π}

Speed of sound in QC_2D : First principle

Speed of sound in QC_2D : Effective models

Inhomogeneous phases in QCD and QC_2D

It is open question if there is inhomogeneous chiral symmetry breaking phase at $\mu_B \neq 0$ Inhomogeneous phases in QCD Phase Diagram

 Inhomogeneous phase was predicted in: (1+1)-dimensional Gross-Neveu (GN) model M. Thies,

A. Wipf, M. Wagner, M. Winstel, L. Pannullo etc.

► Inhomogeneous phase in (3+1)-dimensional effective models

 Inhomogeneous phase in effective models: dependence on the chosen regularization scheme

M. Wagner et al, Phys. Rev. D 110 (2024) 7, 076006

▶ Inhomogeneous phase shown in functional approach

C. Fischer et al, Phys. Rev. D 108 (2023) 11, 114019, Phys.Rev.D 110 (2024) 7, 074014

Inhomogeneous PC at μ_I : skematic

Lianyi He et al, Phys.Rev.D 82 (2010) 056006

Inhomogeneous phase at μ_I : skematic

Inhomogeneous diquark condensation found in two color case in the framework of effective models

J. Andersen et al Phys. Rev. D 81 (2010) 096004

Inhomogeneous phase at μ_I : skematic

59

Inhomogeneous phase: skematic

$$\nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1, \quad \text{CSB} \longleftrightarrow \text{PC}, \quad \text{ICSB} \longleftrightarrow \text{IPC}$$

Inhomogeneous phase: skematic

 $\mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \Delta, \qquad \text{CSB} \longleftrightarrow \text{BSF}, \qquad \text{ICSB} \longleftrightarrow \text{IBSF}$

Inhomogeneous phases

Homogeneous case $\langle \sigma(x) \rangle = M, \quad \langle \pi_{\pm}(x) \rangle = \pi, \quad \langle \pi_3(x) \rangle = 0.$

Inhomogeneous phases (three color case) $\langle \sigma(x) \rangle = M(x), \quad \langle \pi_{\pm}(x) \rangle = \pi(x), \quad \langle \pi_{3}(x) \rangle = 0.$

$$\mathcal{D}: \ M(x) \longleftrightarrow \pi(x), \quad \nu \longleftrightarrow \nu_5$$
$$\mathrm{ICSB} \longleftrightarrow \mathrm{IPC} \quad \nu \longleftrightarrow \nu_5$$

Inhomogeneous phase: skematic

$$\mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow \Delta, \quad \text{PC} \longleftrightarrow \text{BSF}, \quad \text{IPC} \longleftrightarrow \text{IBSF}$$

Inhomogeneous phase at zero μ_B : skematic

Inhomogeneous phases IPC exist usually at $\mu_B \neq 0$ PC Inhomogeneous phase in two color case exist at $\mu_B = 0$ ICSB CSB ٧

 $\nu \longleftrightarrow \nu_5, \qquad M \longleftrightarrow \pi_1, \qquad \text{CSB} \longleftrightarrow \text{PC}, \qquad \text{ICSB} \longleftrightarrow \text{IPC}$

Dualities has been proven from first principles

Speed of sound exceeding the conformal limit is rather **natural** and taking place in a lot of systems, **with various chemical potentials**

And it is natural if it has similar structure in QCD at non-zero baryon density, the most interesting case

Inhomogeneous phases in two and three color case have been studied, in two color case exist at $\mu_B = 0$