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Hohenberg-Kohn theorem

Consider a system of N interacting particles described by the
Hamiltonian

Ĥ ≡ T̂ + v̂ + Ŵ

Let Ψ be the N-body w.f. and n(~r) the corresponding particle
density. Theorem:
–The nongenerate g.s.w.f. is a unique functional of the g.s.
density n0(~r)

Ψ0(~r1, ~r2, ..., ~rN) = Ψ0[n0(~r)].

As a consequence the g.s. expectation value of any observable
is a functional of n0(~r)

E0 ≡ E[n0(~r)] = 〈Ψ[n0]|Ĥ|Ψ[n0]〉
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Hohenberg-Kohn theorem

There exists functional F [n] such that the energy functional can
be written as

E[n] = F [n] +

∫
d3rv(~r)n(~r)

The functional F [n] is universal in the sense that for given NN-
interaction it does not depend on v(~r)
The formal definition of the H-K functional is

F [n] = 〈Ψ[n]|T̂ |Ψ[n]〉+ 〈Ψ[n]|Ŵ |Ψ[n]〉

The H-K theorem gives no practical guide to the construction
of the universal density functional.

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Hohenberg-Kohn theorem

The H-K theorem resembles in some respects «Method of contraction
description» in statistical physics:

t� τ0 =
rc
v̄

fs(x1, x2, ..., xN ; t) → fs(x1, x2, ..., xN ; f1(x′, t))

Functional fs(x1, x2, ..., xN ; f1(x′, t)) is universal and do not
depend on initial conditions.
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Kohn-Sham scheme

δE = 0→ ĥψk(~r, σ, τ) = εkψk(~r, σ, τ)

Single particle Hamiltonian ĥ is the sum of the kinetic term t̂
and the selfconsistent potential Γ̂(ρ):

ĥ =
δE
δρ

= t̂+ Γ̂(ρ)

The existing theorem makes no statement about its structure.
E is considered as functional of all local densities and currents.
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Skyrme functional

Skyrme functional contains the following components of the
densities and currents:

ρ0(~r) =
∑
σ,τ

ρ(~r, σ, τ ;~r, σ, τ)

ρ1(~r) =
∑
σ,τ

ρ(~r, σ, τ ;~r, σ, τ)τ

~s0(~r) =
∑
σ,σ′,τ

ρ(~r, σ, τ ;~r, σ′, τ)~σσ′σ

~s1(~r) =
∑
σ,σ′,τ

ρ(~r, σ, τ ;~r, σ′, τ)~σσ′στ
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Skyrme functional

~jT (~r) =
ı

2
(∇′ −∇)ρT (~r, ~r′)|~r=~r′ − current

~JT (~r) =
ı

2
(∇′ −∇)× ST (~r, ~r′)|~r=~r′ − spin− current tensor

τT (~r) = ∇ · ∇′ρT (~r, ~r′)|~r=~r′ − kinetic density

~TT (~r) = ∇ · ∇′ST (~r, ~r′)|~r=~r′ − kinetic spin density
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Skyrme functional

The Skyrme functional contains systematically all possible bilinear
terms in the local densities and currents up to 2nd order in
the derivatives, which are invariant with respect to parity, time-
reversal, rotational, translational and isospin transformations.

Esk =
∑
T=0,1

{
Cρ
Tρ

2
T + C∆ρ

T ρT∆ρρT + Cτ
TρT τT + CJ

T
~J 2
T

+C∆J
T ρT∇ · ~J + CS

T
~S2
T + C∆S

T ~sT ·∆~ST + CST
T
~ST · ~TT

+C∇ST (∇ · ST )2 + Cj
T
~j2
T + C∇jT

~ST · ∇ ×~jT
}

In applications the functional is parametrized directly by fitting
the coefficients to the gs data without references to any NN-
interaction.
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Skyrme functional

Until now, it has not been possible to construct an interaction
that would satisfy three basic conditions:

- Was realistic, i.e. described NN-phases.

- Correctly described the binding energies at the observed nuclear
radius.

- Provided a good description of spectroscopy.
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Fayans functional

E = Ekin + Ev + Es + ECoul + Esl + Eanom,

Ev =
2

3
ε0
Fρ0

[
av+

1− hv1+x+

1 + hv2+x+

x2
+ + av+

1− hv1−x−
1 + hv2−x−

x2
−

]
,

Es =
2

3
ε0
Fρ0

as+r
2
0(∇x+)2

1 + hs+x+ + hs∇r
2
0(∇x+)2

,

x± =
(ρn ± ρp)

2ρ0

.

Such expressions allow an extrapolation to very high densities.
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Weizs̈sacker’s approach

In 1935 Weizsäcker proposed that an energy density approach
could be effective for calculating nuclear binding energy.
Bethe and Bacher in 1936 further developed Weizsäcker’s idea
and introduced the nuclear mass formula:

E(N,Z) = avA+ asA
2/3 + ac

Z2

A1/3
+ aI

(N − Z)2

A
(1)

av as aI ac χE

-15.46 16.71 22.84 0.698 3.30 MeV

χ2
E =

∑ |Eexp
NZ − E(N,Z)|2

NE

NE = 2375 (2)
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NEDF

E [ρn, ρp] = Ekin[ρn, ρp] + EC [ρn, ρp] + Eint[ρn, ρp]

Ekin[ρn, ρp] =
∑
τ=n,p

~2

2mτ

[
1

9
|∇ρ1/2

τ |2 +
3

5
(3π2)2/3ρ5/3

τ ] + ...

EC =
1

2
VC(~r)ρch(~r)−

e2π

4
(
3ρp(~r)

π
)4/3

VC(~r) =

∫
d3r′

ρch(~r
′)

|~r − ~r′|

Eint[ρn, ρp] = (η − 1

2
)
∑
τ=n,p

~2

2mτ

|∇ρ1/2
τ |2 +

2∑
j=0

Ej(ρ)β2j

Ej(ρ) = ajρ
5/3 + bjρ

2 + cjρ
7/3

ρ = ρn + ρp, β =
(ρn − ρp)
(ρn + ρp)

.
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NEDF

The equation that determine equilibrium density of a nucleus is
obtained by minimizing

E(N,Z) =

∫
d3rE [ρn, ρp]

− η
~2

2mτ

∇2ρ1/2
τ + Uτρ

1/2
τ = µτρ

1/2
τ

Uτ =
∂E [ρn, ρp]

∂ρτ

η b̃0 c̃ ã1 b̃1 χE

0.471 -3.15166 2.12378 1.048 -0.610 2.59 MeV

ãj = ajρ
2/3
0 /εF , b̃j = bjρ0/εF , c̃j = cjρ

4/3
0 /εF
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Dynamical properties

ρ-number density.
φ-local momentum potential: ~p = m~v = ∇φ.
Lagrangian:

L = −ρ(φ̇+
1

2m
(∇φ)2)2 − E(ρ)− η ~2

2m
(∇2ρ1/2)2

Euler-Lagrange equations:

ρ̇+∇(ρv) = 0

φ̇+
mv2

2
+ E ′(ρ)− η ~2

2m

∇2ρ1/2

ρ1/2
= 0
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Dynamical properties

This hydrodynamic theory can be reformulated as

Ψ =
√
ρ exp(

ı

~̃
φ), (~̃ = η1/2~)

L(Ψ, Ψ̇) = Ψ+

(
ı~̃∂t +

~̃2∇2

2m

)
Ψ− E(ρ)

ı~̃Ψ̇ = − ~̃2∇2

2m
Ψ + E ′(ρ)Ψ

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Dynamical properties. Proton-neutron system.

Ψn,p =
√
ρn,p exp(

ı

~̃
θn,p)

L(Ψn,p, ˙Ψn,p) =
(

Ψ+
n Ψ̇n + Ψ+

p Ψ̇p

)
− E(Ψn,Ψp)

E(Ψn,Ψp) =
~̃2

2mn

∇Ψ+
n · ∇Ψn +

~̃2

2mp

∇Ψ+
p · ∇Ψp + Eh(ρn, ρp)

Eh(ρn, ρp) =
3~2(3π2)2/3

10

(
ρ

5/3
n

mn

+
ρ

5/3
p

mp

)
+

1

2
VCρC

− e2π

4

(
3ρp
π

)4/3

+
2∑
j=0

(
ajρ

5/3 + bjρ
6/3 + cjρ

7/3
)(ρn − ρp

ρ

)2j
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Relativistic Energy Density Functional.

The paper of M.M.Johnson and E.Teller (1955) was, in fact,
the first attempt to construct REDF. The following statements
were made:

1. Nuclear interaction is strong. It means that at high energies
many mesons can be created, i.e. in NN-collisions several mesons
can be in virtual states.

2. In heavy nuclei the average number of mesons is much larger
than one. Due to Bose statistics they can be in one and the
same state. The w.f. of this quantum state corresponds to the
nuclear potential.

3. This meson must be scalar. This meson is not necessary is
an elementary particle.
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Relativistic Energy Density Functional.

The next step has been done by H.-P.Dürr. He indicated that
Dirac’s equation symmetries do possible an introduction of both
scalar attractive and vector repulsive potentials. In the stationary
limit:

H = ~α · ~p+ βM − βS + V0, (3)

where V0 is a time like component of the vector potential.
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REDF based on the meson exchange theory.

Only as few mesons as possible are included.
π: J=0, T=1 and P = −
σ: J=0, T=0, P=+
ω: J=1, T=0, P = −
ρ: J=1, T=1, P = −
Without pions

Lint = −gσψ̄σψ − gωψ̄γµωµψ − gρψ̄γµ~τ~ρµψ − eψ̄γµAµψ

The following Dirac equation is derived using this Lagrangian

(γµ(ı∂µ + V µ) +M + S)ψ = 0

where S(x) = gσσ(x), V µ(x) = gωω
µ(x)+gρ~τ~ρ

µ(x)+eAµ(x).
Since meson masses are large Laplace operator can be neglected
in the stationary equations for meson fields, in qualitative consideration,
and σ, ω0 and ρ0

3 becomes proportional to the corresponding
nuclear densities.
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REDF based on the meson exchange theory.

For the total energy we obtain

E =

∫
d3rH(r) =

A∑
i=1

∫
d3rψ+

i (r)(−ı~α · ∇+ βM)ψi(r)

+
1

2

∫
d3r
(
m2
σσ

2 −m2
ω(ω0)2 −m2

ρ(ρ
0
3)2
)

+

∫
d3r
(
gσρsσ + gωρvω

0 + gρρ3ρ
0
3 + eρcA

0
)
.
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Relativistic energy density functional based on chiral EFT.
N.Finelli, N.Kaiser, D.Vretenar, W.Weise.

The construction of EDF is based on the following conjectures:

1. The nuclear gs is characterized by strong scalar and vector
fields which have their origin in the in-medium changes of the
scalar quark condensate and of the quark density.

2. Nuclear binding and saturation arise primarily from chiral
(pionic) fluctuations superimposed on the condensate background
fields.
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Relativistic energy density functional based on chiral EFT.

The energy functional is assumed to be decomposed into three
terms:

F [ρ] = Tkin[ρ] + EH [ρ] + Exc[ρ]

EH is the Hartree energy. We assume that large scalar and
vector mean fields, that have their origin in the in-medium
changes of the chiral condensate and the quark energy, determine
EH . Chiral (pionic) fluctuations including one- and two-pion
exchange are incorporated in the Exc.
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Relativistic energy density functional based on chiral EFT.

The relativistic Lagrangian includes: isoscalar-scalar (S), isoscalar-
vector (V), isovector-scalar (TS) and isovector-vector (TV) effective
four-fermion interaction vertices with density dependent coupling
strengths.

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Relativistic energy density functional based on chiral EFT.

The gs energy of the even-even nucleus with A-nucleons is
presented as:

E0 =
A∑
k=1

εk −
1

2

∫
d3r
{

[G(0)
s +G(π)

s (ρ)]ρ2
s +G

(π)
TS(ρ)ρ2

S3

+[G
(0)
V +G

(π)
V (ρ)]ρ2 +G

(π)
TV (ρ)ρ2

3 +
∂G

(π)
s (ρ)

∂ρ
ρ2
sρ

+
∂G

(π)
TS(ρ)

∂ρ
ρ2
s3ρ+

∂G
(π)
V (ρ)

∂ρ
ρ3 +

∂G
(π)
TV (ρ)

∂ρ
ρ2

3ρ

+D
(π)
S ρs∇2ρs + eρchA

(0)
}

where εk denotes single particle Kohn-Sham energies.
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Relativistic energy density functional based on chiral EFT.

The coupling constants are decomposed as

Gi(ρ̂) = G
(0)
i +G

(π)
i (ρ̂),where i = S, V

Gi(ρ̂) = G
(π)
i (ρ̂),where i = TS, TV

The density dependent part arise from isoscalar-scalar and -
vector background fields, whereas G(π)

i (ρ̂) are generated by one-
and two-pion exchange dynamics.

R.V.Jolos and E.A.Kolganova Nuclear Energy Density Functionals



Relativistic energy density functional based on chiral EFT.

The following estimates follows from the QCD sum rules:

G
(0)
S = −σNMN

m2
πf

2
π

G
(0)
V = −4(mu +md)MN

m2
πf

2
π

σN
mu +md

ρs = < q̄q >p − < q̄q >0
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Relativistic energy density functional based on chiral EFT.

The resulting expressions for the density dependent couplings
are:

G(π)
s = cs1 + cs2ρ

1/3 + cs3ρ
2/3 + cs4ρ,

G(π)
v = c̄v1 + c̄v2ρ

1/3 + c̄v3ρ
2/3 + c̄v4ρ,

G
(π)
TS = cts1 + cts2ρ

1/3 + cts3ρ
2/3 + cts4ρ,

G
(π)
TV = ctv1 + ctv2ρ

1/3 + ctv3ρ
2/3 + ctv4ρ,
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Relativistic energy density functional based on chiral EFT.

The quantitative accuracy of the calculated binding energies and
radii is such that deviations from empirical data are usually less
than 0.5% throuhgout the nuclear chart. It has to be noted,
however, that these results still do not reach the accuracy of
the best phenomenological mass tables (modern Skyrme based
phenomenological mass formulas).
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Relativistic energy density functional based on chiral EFT.

The nuclear energy density functional developed above contains
at most 7 significant parameters, each clearly related to specific
properties of nuclei. 4 of which are related to contact terms that
appear in the ChPT treatment of nuclear matter. One parameter
fixes a derivative term, and two more represent the strength of
scalar and vector Hartree fields. The values of the parameters are
adjusted to the properties of nuclear matter, binding energies,
charge radii and differences between proton and neutron radii
of spherical nuclei.
The resulting optimal parameter set is remarkably close to the
anticipated QCD sum rules and ChPT values, with exception of
two constants associated with 3-body correlations.
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Conclusion

1. The parameters of the NEDF are fitted without reference to
any NN-interaction.

2. NEDF is given as expansion in degrees of density and currents
(excluding Fayans functional).

3. The changes of the quark condensate and quark density in
the presence of the barionic matter are sources of strong scalar
(attractive) and vector (repulsive) fields experienced by nucleons
in the nucleus. These fields produce Hartree mean field nucleon
potential, and are at the origin of the large energy spacings
between spin-orbit partner states in nuclei.
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