A. V. Karpishkov^{1,2}, V. A. Saleev^{1,2}

¹ Samara National Research University ² Joint Institute for Nuclear Research

> 22.01.2025 SPD Physics and MC meeting

Generalized Parton Model (GPM) and it's application to calculation of TSSA

Generalized Parton Model (GPM) and it's application to calculation of TSSA

Factorization formula for the GPM

Factorization formula for the GPM

Within the GPM we can write the following expression for the differential crosssection of $2 \rightarrow 1$ hard subprocess $g(q_1) + g(q_2) \rightarrow C(k)$:

$$d\sigma(pp \to \mathcal{C}X) = \int dx_1 \int d^2 \mathbf{q_{1T}} \int dx_2 \int d^2 \mathbf{q_{2T}} \times F_g(x_1, q_{1T}, \mu_F) F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}), \quad (1)$$

where $C = J/\psi, \psi(2S)$ or $\chi_c(1P)$, and

$$d\hat{\sigma}(gg \to \mathcal{C}) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - k) \frac{\overline{|M(gg \to \mathcal{C})|^2}}{2x_1 x_2 s} \frac{d^4k}{(2\pi)^3} \delta_+(k^2 - m_{\mathcal{C}}^2).$$
(2)

In a case of $2 \to 2$ subprocess $g(q_1) + g(q_2) \to C(k) + g(q_3)$, $C = J/\psi, \psi(2S)$ in formula (1) $d\hat{\sigma}(gg \to C)$ must be replaced by:

$$d\hat{\sigma}(gg \to \mathcal{C}g) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - k - q_3) \frac{\overline{|M(gg \to \mathcal{C}g)|^2}}{2x_1 x_2 s} \frac{d^3k}{(2\pi)^3 2k_0} \frac{d^4q_3}{(2\pi)^3} \delta_+(q_3^2).$$
(3)

$$q_1^{\mu} = \left(x_1 \frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{1T}^2}{2\sqrt{s}x_1}, \mathbf{q}_{1T}, x_1 \frac{\sqrt{s}}{2} - \frac{\mathbf{q}_{1T}^2}{2\sqrt{s}x_1} \right)^{\mu}, \tag{4}$$

$$q_2^{\mu} = \left(x_2 \frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{2T}^2}{2\sqrt{s}x_2}, \mathbf{q}_{2T}, -x_2 \frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{2T}^2}{2\sqrt{s}x_2} \right)^{\mu}.$$
(5)

Generalized Parton Model (GPM) and it's application to calculation of TSSA

Polarized production. TSSA

Transverse Single Spin Asymmetry (TSSA)

In inclusive process $p^{\uparrow}p \to \mathcal{C}X \ \mathcal{C} = J/\psi, \chi_c, \psi(2S))$ TSSA is defined as:

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma}.$$
 (6)

The numerator and denominator of A_N have the form:

$$d\sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} F_g(x_1, q_{1T}, \mu_F) F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X), \quad (7)$$

$$d\Delta \sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} [\hat{F}_g^{\uparrow}(x_1, \mathbf{q}_{1T}, \mu_F) - \hat{F}_g^{\downarrow}(x_1, \mathbf{q}_{1T}, \mu_F)] \times F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X), \quad (8)$$

where $\hat{F}_{g}^{\uparrow,\downarrow}(x,q_{T},\mu_{F})$ is the distribution of unpolarized gluon (or quark) in polarized proton, $\hat{F}_{g}^{(\uparrow)}(x_{1},\mathbf{q}_{1T},\mu_{F}) - \hat{F}_{g}^{(\downarrow)}(x_{1},\mathbf{q}_{1T},\mu_{F}) \equiv \Delta \hat{F}_{g}^{\uparrow}(x_{1},\mathbf{q}_{1T},\mu_{F})$ – the gluon Sivers function (GSF).

Generalized Parton Model (GPM) and it's application to calculation of TSSA

LIncluding ISI and FSI – Color Gauge Invariant formulation of GPM

TSSA within the CGI-GPM framework

Figure 1: LO diagrams for the process $p^{\uparrow}p \rightarrow J/\psi X$, assuming a color-singlet production mechanism, within the GPM (a) and the CGI-GPM (b), (c). It turns out that only initial state interactions depicted in (b) contribute to the TSSA. Figure is from [D'Alesio *et.al.*, Phys. Rev. D **96**, 036011 (2017)].

In GPM (Fig. 1 (a)) we can write the numerator of the asymmetry as follows:

$$d\Delta\sigma \propto \Delta \hat{F}_g^{\uparrow}(x_1, \mathbf{q}_{1T}, \mu_F) \otimes F_g(x_2, q_{2T}, \mu_F) \otimes H^U_{gg \to cd}, \tag{9}$$

where $H^U_{gg \to cd} = \overline{|M(gg \to cd)|^2}$.

Generalized Parton Model (GPM) and it's application to calculation of TSSA

LIncluding ISI and FSI – Color Gauge Invariant formulation of GPM

TSSA within the CGI-GPM framework

Figure 2: LO diagrams for the process $p^{\uparrow}p \rightarrow J/\psi X$, assuming a color-singlet production mechanism, within the GPM (a) and the CGI-GPM (b), (c). It turns out that only initial state interactions depicted in (b) contribute to the TSSA. Figure is from [D'Alesio *et.al.*, Phys. Rev. D **96**, 036011 (2017)].

Formally, the numerator of the asymmetry in the CGI-GPM approach ([L. Gamberg and Z. B. Kang, Phys. Lett. B **696**, 109 (2011)]) can be obtained from eq. (9) by with the substitution:

$$F_{1T}^{\perp g} H_{gg \to J/\psi g}^{U} \to \frac{C_{I}^{(f)} + C_{F_{c}}^{(f)}}{C_{U}} F_{1T}^{\perp g(f)} H_{gg \to J/\psi g}^{U} + \frac{C_{I}^{(d)} + C_{F_{c}}^{(d)}}{C_{U}} F_{1T}^{\perp g(d)} H_{gg \to J/\psi g}^{U} \equiv \\ \equiv F_{1T}^{\perp g(f)} H_{gg \to J/\psi g}^{Inc(f)} + F_{1T}^{\perp g(d)} H_{gg \to J/\psi g}^{Inc(d)}.$$
(10)

TSSA in charmonium production at NICA

TSSA in charmonium production at NICA

TSSA in charmonium production at NICA

└─Numerical results. Predictions for NICA

TSSA of χ_{c_0} at NICA (D'Alesio), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 3: Predictions for TSSA $A_N^{\chi_{C0}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The D'Alesio *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of χ_{c_0} at NICA (SIDIS1), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 4: Predictions for TSSA $A_N^{\chi_{c0}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS1 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of χ_{c_0} at NICA (SIDIS2), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 5: Predictions for TSSA $A_N^{\chi_{C0}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS2 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

└─Numerical results. Predictions for NICA

TSSA of χ_{c_2} at NICA (D'Alesio), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 6: Predictions for TSSA $A_N^{\chi_{C_2}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The D'Alesio *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of χ_{c_2} at NICA (SIDIS1), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 7: Predictions for TSSA $A_N^{\chi_{C_2}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS1 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of χ_{c_2} at NICA (SIDIS2), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 8: Predictions for TSSA $A_N^{\chi_{C_2}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS2 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of $\psi(2S)$ at NICA (D'Alesio), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 9: Predictions for TSSA $A_N^{\psi(2S)}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The D'Alesio *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of $\psi(2S)$ at NICA (SIDIS1), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 10: Predictions for TSSA $A_N^{\psi(2S)}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS1 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of $\psi(2S)$ at NICA (SIDIS2), $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 11: Predictions for TSSA $A_N^{\psi(2S)}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within NRQCD (solid histogram) and ICEM (dashed histogram) approaches. The SIDIS2 *et al.* parametrisation of GSFs is used.

TSSA in charmonium production at NICA

LNumerical results. Predictions for NICA

TSSA of χ_{c_1} at NICA, $|y| \leq 3$, $\sqrt{s} = 24$ GeV.

Figure 12: Predictions for TSSA $A_N^{\chi_{c_1}}$ as function of p_T and x_F at $\sqrt{s} = 24$ GeV within ICEM approach.

TSSA in charmonium production at SpinQuest

TSSA in charmonium production at SpinQuest (Fermilab NM4)

TSSA in charmonium production at SpinQuest

About SpinQuest Main goal of SpinQuest

spin axis of the nucleon?

Physics of SpinQuest

Polarized target

Spectrometer

Collaboration

Presentations and publications C

Data Management Plan

Contact us

Related Links

- Website
- University of Michigan Wiki (login required)

Every proton and neutron is made up of tinier particles called quarks and gluons, and we continue to explore how the quarks and gluons

A fixed-target experiment using the 120 GeV Main Injector beam and a polarized frozen-ammonia target.

$$\sqrt{s} = 15 \text{ GeV}, \qquad |x_F| \ge 0.4$$

TSSA in charmonium production at SpinQuest

└─Numerical results. Predictions for SpinQuest

TSSA of J/ψ at SpinQuest: $\sqrt{s} = 15$ GeV, $|x_F| \ge 0.4$.

Figure 13: Predictions for TSSA $A_N^{J/\psi}$ (prompt) as function of p_T (left) and x_F (right) at $\sqrt{s} = 15$ GeV within GPM+CSM approaches.

TSSA in charmonium production at SpinQuest

└─Numerical results. Predictions for SpinQuest

Comparison to NICA: $\sqrt{s} = 27$ GeV, $|y| \le 3$.

Figure 14: Predictions for TSSA $A_N^{J/\psi}$ (prompt) as function of p_T (left) and x_F (right) at $\sqrt{s} = 27$ GeV within GPM+CSM approaches.

TSSA in charmonium production at SpinQuest

-Numerical results. Predictions for SpinQuest

TSSA of J/ψ at SpinQuest: $\sqrt{S} = 15$ GeV, $|x_F| \ge 0.4$.

Figure 15: Predictions for TSSA $A_N^{J/\psi}$ (prompt) as function of p_T (left) and x_F (right) at $\sqrt{s} = 15$ GeV within CGI-GPM+CSM approaches.

A small announcement: predictions for J/ψ within Soft Gluon Resummation model.

Calculations of Kirill Shilyaev (PhD student, Samara University):

Figure 16: Predictions for cross sections for prompt J/ψ : $\frac{d\sigma}{dp_T}$ at NICA $\sqrt{s} = 27$ GeV (left) and $E \frac{d^3\sigma}{dp^3}$ at PHENIX $\sqrt{s} = 200$ GeV (right) within the SGR model.

▶ For all the *P*-wave charmonia states we see significant discrepancies between predictions within CSM and ICEM. It is especially noticeable for x_F -distribution.

- ▶ For all the *P*-wave charmonia states we see significant discrepancies between predictions within CSM and ICEM. It is especially noticeable for x_F -distribution.
- ▶ For $\psi(2S)$ state both p_T and x_F dependencies of A_N has big discrepancies between predictions within CSM and ICEM.

- ▶ For all the *P*-wave charmonia states we see significant discrepancies between predictions within CSM and ICEM. It is especially noticeable for x_F -distribution.
- ▶ For $\psi(2S)$ state both p_T and x_F dependencies of A_N has big discrepancies between predictions within CSM and ICEM.
- ▶ SIDIS1 parametrization of the GSF gives the biggest value of the TSSA.

- For all the *P*-wave charmonia states we see significant discrepancies between predictions within CSM and ICEM. It is especially noticeable for x_F -distribution.
- ▶ For $\psi(2S)$ state both p_T and x_F dependencies of A_N has big discrepancies between predictions within CSM and ICEM.
- ▶ SIDIS1 parametrization of the GSF gives the biggest value of the TSSA.
- At SpinQuest kinematics we see quite similar results of A_N for J/ψ .

- ▶ For all the *P*-wave charmonia states we see significant discrepancies between predictions within CSM and ICEM. It is especially noticeable for x_F -distribution.
- ▶ For $\psi(2S)$ state both p_T and x_F dependencies of A_N has big discrepancies between predictions within CSM and ICEM.
- ▶ SIDIS1 parametrization of the GSF gives the biggest value of the TSSA.
- At SpinQuest kinematics we see quite similar results of A_N for J/ψ .
- ▶ CGI-GPM can reproduce **negative** values of the TSSA.

Thank you for your attention!

Backup: Color factors and Feynman rules in the CGI-GPM framework

Figure 17: CGI-GPM color rules for the eikonal three-gluon (a), quark-gluon (b) and antiquark-gluon (c) vertices. The color projectors for the gluon (d) and the QSF (e) are shown as well. The eikonal gluon has color index c. Figure is from [D'Alesio *et.al.*, Phys. Rev. D **96**, 036011 (2017)].

The color factors are:

$$\mathcal{T}_{aa'}^c = \mathcal{N}_{\mathcal{T}} T_{aa'}^c, \mathcal{D}_{aa'}^c = \mathcal{N}_{\mathcal{D}} D_{aa'}^c, \mathcal{Q}_{ij}^c = \mathcal{N}_{\mathcal{Q}} t_{ij}^c, \tag{11}$$

where $T_{cb}^a \equiv -if_{acb}$, $D_{bc}^a \equiv d_{abc}$, $\mathcal{N}_{\mathcal{T}} = \frac{1}{Tr[T^cT^c]} = 1/(N_c(N_c^2 - 1))$, $\mathcal{N}_{\mathcal{D}} = \frac{1}{Tr[D^cD^c]} = 1/((N_c^2 - 4)(N_c^2 - 1))$, $\mathcal{N}_{\mathcal{Q}} = \frac{1}{Tr[t^ct^c]} = 2/(N_c^2 - 1)$. So, correspondingly, for the *f*- and *d*-type GSF, the relative color factor is therefore calculated from Fig. 1(b) as follows:

$$C_I^{(f)} = -\frac{1}{2}C_U, C_I^{(d)} = 0.$$
(12)

And in CSM of the heavy quark-antiquark pair to the FSI, depicted in Fig. 1(c):

$$C_{F_c}^{(f)} = C_{F_c}^{(d)} = 0. (13)$$