

Detection of Cardiovascular Conditions on ECG Signals via Deep Learning Methods

Shahane Tigranyan^{1,*}, Aram Avetisyan², Sergey Skorik², Karen Avetisyan¹, Sevak Sargsyan¹

¹Center of Advanced Software Technologies, Russian - Armenian University ²Institute for System Programming of the Russian Academy of Sciences

GRID'2025, 7-11 July, Dubna

Cardiovascular diseases (CVDs) are **the leading cause of death** globally. (dark blue and purple regions – with the highest number of deaths)

ECG (Electrocardiogram) is a fast and cheap medical test measuring heart electrical activity. It is used to detect heart problems and monitor the heart's status.

ECG analysis

Deep learning is used to automate ECG analysis to detect pathologies of the cardiovascular system.

➤ 12-lead ECG Analysis

Single-lead ECG Analysis

\succ ECG Delineation

\succ ECG Service

➤ 12-lead ECG Analysis

➤ Single-lead ECG Analysis

\succ ECG Delineation

\succ ECG Service

Why does current solution not work?

Datasets:

- Small in size
- Not diverse in pathologies
- Annotated by small groups of cardiologists
- Hospitals use different cardiographs

Models:

• Not stable to data source changes

Proposed methodology:

- resilient to changes in datasets
- improves classification quality of more diseases
- demonstrates applicability in the clinical setting

Data

- **PTB-XL** publicly available
- **TIS** closed

	TIS	PTB-XL
Total	581.151	21.799
Age		
18 - 29	55.459	1.246
30 - 49	141.629	3.930
50 - 69	275.941	9.689
>= 70	108.122	6.801
Sex		
male	211.347	11.354
female	369.804	10.445
Frequency		
500 Hz	464.797	21.799
1000Hz	116.354	0
Number of doctors	129	2

Data

For experiments we chose 7 pathologies:

- Atrial Fibrillation AFIB
- Sinus Tachycardia STACH
- Sinus Bradycardia SBRAD
- Premature Ventricular Complexes PVC
- Left Bundle Branch Block LBBB
- Right Bundle Branch Block RBBB
- First-degree AV Block 1AVB

Experiments

Experiments

 In the first experiment, models are trained on PTB-XL and TIS. After that, the models are evaluated on the TIS test set.

		Pathology															
Train		A	AFIB				RBBB					LBBB					
	Sens.	Spec.	G-mean	F2	Sens.	Spec.	G-mea n	F2	Sens.	Spec	e. G-	mea n	F2	Sens.	Spec.	G-mean	. F2
PTB-XL _dn	0.956	0.980	0.968	0.832	0.750	0.940	0.840	0.435	0.913	0.90'	7 0	.910	0.702	0.732	0.985	0.849	0.546
TIS_dn	082	0.001	0.086	0.017	0.063	0.033	0.048	0.52	0.050	0 01'	7 0	033	0.74	0 011	0.077	0.042	0.582
	-							Pa	thology							-	
	Tra	ain		STA	ACH			S	SBRAD PVC								
			Sens.	Spec.	G-mea n	F2	Sens.	Spec.	G-me	an	F2	Sens.	Spe	c. G	-mean	F2	
	РТВ-Х	I_dn	0.504	0.980	0.703	0.530	0.538	0.954	0.71	.6	0.487	0.931	0.93	51	0.931	0.551	
	TIS	_dn	0.977	0.937	0.957	0.847	0.987	0.945	0.96	6	0.801	0.987	0.98	4	0.986	0.852	

Experiments

- In the first experiment, models are trained on PTB-XL and TIS. After that, the models are evaluated on the TIS test set.
- 2. In the second experiment, a third model is added: trained on TIS and fine-tuned on PTB-XL. After that, the models are evaluated on the PTB-XL test set.

		Pathology																	
Train		1	AFIB				1	AVB			R	BBB]	LBBB		
	Sens.	Spec.	G-me	ean 1	72	Sens	Spec.	G-mea n	F2	Sens.	Spec.	G-mea	n F2	S	Sens.	Spec.	G-me	an	F2
PTB-XL_dn	0.929	0.969	0.94	49 0.	868	0.905	0.884	0.894	0.566	0.972	0.942	0.957	0.85	5 ().842	0.980	0.90)8	0.762
TIS_dn	0.952	0.953	0.98	53 0.	850	0.91 8	0.859	0.888	0.531	0.985	0.938	0.961	0.85	6 C).992	0.907	0.94	18	0.599
TIS_tuned_	0.942	0 972	0.01	57 0	884	0.892	በ ወንዩ	0 908	0.644	0.985	0 9/7	0.966	0.87	2) 917	0 082		9	0.827
									Path	ology									
	Train			ST	ACH				SB	RAD				F	VC				
		s	ens.	Spec.	G	-mean	F2	Sens.	Spec.	G-mea	n F2	Se	ens. S	Spec.	G-n	nean	F2		
	PTB-XL_ n	d 0	.951	0.962		0.957	0.804	0.789	0.928	0.856	0.55	51 0.	956 ().953	0.	954	0.821		
	TIS_dn	. 0	.982	0.906		0.943	0.665	0.961	0.848	0.902	0.48	. 0.	991 ().970	0.	981	0.895		
	TIS_tune _dn	d o	.963	0.979	(0.971	0.876	0.891	0.913	0.902	0.57	5 0.	987 (.980	0.9	983	0.921		17

Additional experiments

To estimate the quality of DNNs in clinical practice, we compared their prediction with the independent evaluation of 500 ECG from PTB-XL by three doctors from different hospitals.

	Pathology												
Train						1A	VB		RBBB				
	Sens.	Spec.	G-mea n	F2	Sens.	Spec.	G-mea n	F2	Sens.	Spec.	G-mea n	F2	
TIS_tuned_d n	0.942	0.972	0.957	0.884	0.892	0.923	0.908	0.644	0.985	0.947	0.966	0.873	
Doctor1	0.941	0.985	0.963	0.914	0.882	0.913	0.897	0.600	0.946	0.896	0.921	0.758	
Doctor2	0.941	0.978	0.960	0.899	0.529	0.959	0.712	0.464	0.649	0.987	0.800	0.674	
Doctor3	0.941	0.987	0.964	0.920	0.765	0.963	0.858	0.657	0.676	0.900	0.780	0.571	

18

Additional experiments

Pathology	Sensitivity	Specificity	G-mean
Atrial Fibrillation	0.981	0.975	0.978
Ventricular Premature Complexes	0.958	0.890	0.923
Sinus Tachycardia	0.912	0.939	0.926
Sinus Bradycardia	0.918	0.977	0.947
First Degree AV Block	0.921	0.923	0.922
Incomplete Right Bundle-Branch Block	0.825	0.936	0.878
Complete Right Bundle-Branch Block	0.963	0.980	0.972
Complete Left Bundle-Branch Block	0.965	0.970	0.967
Supraventricular Premature Complexes	0.930	0.861	0.894
Left-axis Deviation	0.877	0.952	0.914
Right-axis deviation	0.939	0.960	0.949

➤ 12-lead ECG Analysis

Single-lead ECG Analysis

\succ ECG Delineation

\succ ECG Service

Single-lead ECG

• Problems:

Limited number of single-channel ECGs

• Proposal:

Pre-train models on 12-lead ECGs and then retrain on 1-lead ECGs

- > 1-lead ECGs are similar to lead I of a 12-lead ECG
- > 12-lead ECGs contain more information than a single-lead ECG

• Training:

- ➤ Using lead I of a 12-lead ECG for training
- \succ Using the 12-lead ECG labeling

Lead Combinations with Contrastive Learning (LC-CL)

LC-CL: Experiments

- We conduct 2 experiments to determine the effectiveness of our approach.
- We use ResNet1d50 as an encoder for all experiments.
- G-mean and F1-score metrics are used to evaluate the quality.

Settings:

- Different combinations of leads for the LC-CL method to determine the optimal combination.
- Comparison of the proposed method with existing contrast methods.

LC-CL: Experiments

We compare lead combinations for the LC-CL method and the supervised approach.

We consider 3 lead combinations:

- 1vs11 one helper encoder (11 leads except I)
- 1vs1vs6 two helper encoders (lead II + 6 chest leads)
- 1vs7 one helper encoder (lead II and 6 chest leads)

Their	AF	ΊB	14	VB	PV	/C	CLBBB		
Iram	G-mean	F1-score	G-mean	F1-score	G-mean	F1-score	G-mean	F1-score	
Supervised	0.849	0.377	0.804	0.192	0.878	0.383	0.939	0.353	
LC-CL (1vs11)	0.933	0.601	0.868	0.270	0.935	0.504	0.973	0.462	
LC-CL (1vs1vs6)	0.925	0.577	0.867	0.249	0.901	0.618	0.944	0.453	
LC-CL (1vs7)	0.934	0.591	0.887	0.280	0.920	0.634	0.962	0.430	

LC-CL: Experiments

- We compare our LC-CL method with Supervised and two contrast methods: SimCLR and TS-TCC.
- We choose the 1vs7 LC-CL model configuration in this comparison.

Train	AF	IB	14	VB	PV	/C	CLBBB		
	G-mean	F1-score	G-mean	F1-score	G-mean	F1-score	G-mean	F1-score	
Supervised	0.849	0.377	0.804	0.192	0.878	0.383	0.939	0.353	
SimCLR	0.927	0.620	0.863	0.267	0.943	0.620	0.966	0.492	
TS-TCC	0.947	0.738	0.874	0.262	0.962	0.677	0.969	0.525	
LC-CL	0.950	0.694	0.884	0.282	0.941	0.759	0.969	0.671	

\succ 12-lead ECG Analysis

➤ Single-lead ECG Analysis

\succ ECG Delineation

\succ ECG Service

Each ECG record consists of PQRST segments

Task: To identify segments and intervals of PQRST complexes

Task: Find the positions of peaks, beginnings and ends of intervals on the ECG recording – QRS complex, P wave, T wave. Existing segmentation methods:

- "mathematical": filtering and searching for locally largest/smallest values. They start to make big mistakes for segmenting some of the complexes (P wave, T wave).
- Neural networks (Unet): there are few open datasets on segmentation (LUDB, QTDB).

Metrics:

- **True Positives** The predicted point fell into the neighborhood (window tolerance) of the corresponding ground truth point with the same class.
- False Positives The predicted point did not fall into any neighborhood of the corresponding ground truth point.
- False Negatives Ground truth points for which there were no predicted points in the neighborhood.

Detection	Sensitivity	PPV
P-wave onset detection	0.967	0.956
P-wave offset detection	0.967	0.956
QRS onset detection	0.987	0.998
QRS offset detection	0.987	0.998
Q-wave onset detection	0.951	0.955
Q-wave offset detection	0.938	0.942

$$Sensitivity = rac{TP}{TP+FN}$$
 $PPV = rac{TP}{TP+FP}$

\succ 12-lead ECG Analysis

➤ Single-lead ECG Analysis

\succ ECG Delineation

\succ ECG Service

ECG Service

ECG signal is uploaded manually or automatically transferred from cardiograph.

The response is sent back to the user interface.

The classification service can be integrated with the medical system via API.

ECG Service

ECG lib

ECG Service

Other Research Directions

- Federated Learning
- Affective Computing (Emotion Recognition)
- Speech Technologies

Thank you!!!

shahane.tigranyan99@gmail.com