I'.ll ‘@j Institute for High Energy Physics named by A.A. Logunov of National
“0 Research Centre "Kurchatov Institute”

HAUMOHANBHBIA
WCCNEOOBATENBCKMIA LIEHTP

«KYPYATOBCKHUM
UHCTUTYT»

Development of a knowledge base system for
administration of the NRC 'Kurchatov Institute' — IHEP

computing center based on Linux history tools

Author:

Maria Shemeiko

Co-authors:

Viktor Kotliar, Valerii Morozov

Introduction

Problem: System administrators need to maintain
knowledge of numerous server commands across
different systems.

Objective: To establish a unified knowledge base for
collecting and storing command execution history.

Challenges: Current solutions prove unsuitable for
various reasons. Examples:

- Command Cache
- JC (JSON Convert)

Linux history tools

Three most common tools for logging activity:

Sudo Logging — Audits privileged commands (sudo).

Process Accounting — Logs detailed information about every
command executed on the system (auditd, acct).

Bash History — Tracks user command history (.bash_history).

Configuration for .bashrc

For the history collection script to work properly, its output must meet the
following requirements:

- Preserve lines beginning with a space
- Include timestamps
- Retain history across multiple sessions

To ensure compliance and automate .bashrc modifications on worker nodes,
an Ansible playbook was developed.

Ansible playbook

Backup .bashrc file

Remove the rule that ignores lines with spaces
HISTCONTROL=ignorespace
Add configurations to .bashrc
— Add timestamps HISTTIMEFORMAT="%d/%m/%y %T "
— Increase history size H1sTs1zE=10000000

- Add history saving across multiple sessions
shopt -s histappend
PROMPT_COMMAND="history -a;$PROMPT_COMMAND"

Work process

Goal: Automate .bash_history upload to OpenSearch.
Script:
Pre-checks:
- Lock file (prevents duplicate runs).
- OpenSearch server availability (test request).
Two-Pass Processing:
- Pass 1: Extract commands + timestamps.
- Pass 2: Assign timestamps to untimed commands.
Output:
- Commands with ISO 8601 timestamps (timezone-aware).

- Progress logs.

Script output

=== [Tue 24 Jun 2025 03:35:03 PM MSK] Starting script execution ===
v Successfully connected to OpenSearch

Last posted timestamp: 2025-06-23 16:02:52

Posted: vi history/run_hist.sh (Time: 2025-06-24T15:29:57+03:00)

Posted: curl -s -XGET "http://localhost:9200/history/ _search?pretty” (Time: 2025-06-
24T15:34:26+03:00)

Updated last timestamp to: 2025-06-24 15:34:26
Posted 2 new commands.

=== [Tue 24 Jun 2025 03:35:05 PM MSK] Script completed successfully ===

Columns T Sortfields
Time (timestamp) wr

Jun 26, 2025 @ 11:04:33 +03:00

Jum 26, 2025 @ 11:03:09 +03:00

Jun 26, 2025 @ 11:03:03 +03:00

Jun 26, 2025 @ 11:02:44 +03:00

Jum 26, 2025 @ 11:02:27 +03:00

Jun 26, 2025 @ 11:02:14 +03:00

Source

hostname

hostname

hostname

hostname

hostname

hostname

mond003.md5.ihep.su

mondi0i3. md5.ihep.su

mon000d. md5.ihep.su

mondoi3. mds.ihep.su

mon000d.md5.ihep.su

mond003.md5.ihep.su

command

command

command

command

command

command

Result

crontab-e | timestamp Jun 26, 2025 @ 11:04:33 +03:00 _id ZdREgQS5cBymgiYLNW3_EK _type

_imdex historian | _score

vi history/historian.py timestamp Jun 26, 2025 @ 11:03:09 +03:00 _id ZNREgQS5cBymgiYLNW3vGl _type - _index historian _score
vi history/historian.py timestamp Jun 26, 2025 @ 11:03:03 +03:00 _id aNRGqQS5cBymgiYLMWdvGY _type - _index historian | _score
vihistory/run_hist.sh timestamp Jun 26, 2025 @ 11:02:44 +03:00 _id Y9REqScBymgYLNW3vFp _type - _index historian | _score
vi history/historian.py timestamp Jun 26, 2025 @ 11:02:27 +03:00 _id Z9RGg5cBymgiYLNWdvFE | _type - _index historian _score

crontab -e | timestamp Jun 26, 2025 @ 11:02:14 +03:00 _id YTIREQScBymgiYLNW3PH4 _type

_index | historian | _score

Conclusion & Future Work

Implemented:
Ansible playbook for integrating settings into the .bashrc file

Python script for collecting command history and uploading
data to the OpenSearch database

Development Plans:
Implementation of an algorithm to filter duplicate commands
Integration with a task manager

Deployment of Al-based functionality

Adding a mechanism to detect potentially dangerous
commands 9

Thank you for attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

