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MICC – multifunctional information computing 

complex 
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General view of JINR MICC 

LITmon – MICC monitoring system 
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Introduction 

LITmon 

 alert 

 reporter 

Log 

 recognition  

algorithm 

 

Model 

 

We need a convenient  

tool that will report possible 

 problems and do the work of 

 administrators itself, involving 

 them only in extreme cases 

It is necessary to develop 

a system that will classify  

logs and aggregate results 

under certain conditions 

The neural network  

approach has proven  

itself well for analyzing 

 text information 
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Linux serial consoles  
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It is necessary to analyze all existing serial consoles logs, which contain more than a 

million lines. The logs contain data for 3 years. This will require a lot of time 

investment. 
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LITmon alert reporter development 
 

 

 

   1) Collect training data for dataset 
 
   2) Develop and train a neural model 
 
   3) Automate loading logs into the model    
       and display the results of recognition in 
       a web interface 
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Creating of data set 

The control, computing  

and disk servers 
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Number of errors in the training set by type Real 

units 

Generated 

units 

Type 1 kernel panic - Linux kernel crashes 110 4190  

Type 2 network errors - disconnection of 

network interfaces 

460 4098  

Type 3 critical medium errors - critical hard drive 

errors 

1802 4102  

 

Type 4 blk_update - correctable hard drive 

errors 

4035  

 

4035  

Type 5 kernel errors - kernel errors 372 4257  

Type 6 uncorrectable memory errors - 

uncorrectable memory errors 

77 4077  

Type 7 hardware errors - hardware errors 1137 3732  

Type 8 raid errors 142 4102  

Type 0 good - normal state of logs 3128 3128 
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 Embedding layer of 128 

 Hidden layer of LSTM cells of 256 

 Output layer of 9 

Neural model testing 

Creating neural model 

Tokenizing data 

Collected data from the log database  

Model development based on LSTM 
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 Testing neuro model on 2 weeks 

of logs 

 From words to numbers 

 Filtering logs by regular 

expression and drop it  

not corresponding to  

certain class 
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LSTM (Long short-term memory)  
neural model constriction 
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 Embedding layer size - 128  

 Hidden layer of LSTM cells of 256 

 Output layer size - 9 

 Loss function: cross entropy 

Activation function: linear 

ADAM optimizer 
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LOGmon model testing results for 2 

weeks  
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Number of errors in the 

training set by type 

Units 

LOGmon 

Units 

real 

correctable_disk_error  927  31 

kernel_errors  13  13 

hardware_errors  36  0 

critical_disk_errors 10  9 

kernel_panic  10  2  

network_errors  3 1 

uncorrectable_memory 

_errors  
3  1 

raid_errors 7  1 

unknown 69  - 

If probability < 60% - 

unknown 

 

 accuracy = 0.9771  

 precision = 1.0 

 recall = 0.9769  

 Sp = 0.0133 

 purity = 0.0 

 f1_score = 0.9883 

 log_recognition = 0.99 

 

  

number_of_test = 29242 

probability_error_recognition = 100% 

probability of error detection = true_negative model prediction / true_negative real * 100% 
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Program realization: structural diagram for 
automation of log recognition process 
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1) Serial console servers gather data from MICC servers 
and sent it to Loki DB 
 

  2) LITmon runs a special plugin 
for log monitoring This plugin 
accesses the system log analysis 
system. This system downloads 
data from the Loki database and 
runs LOGmon model to classify 
serial consoles system logs. 
 
 
3) The results of classification and 
statistical data are displayed on 
various  
dashboards 
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Program realization: Grafana dashboard 
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Recognized logs  

Select Host and error type  
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Real results: examples 
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уже несколько таких ошибок на консоле:  

{{{  

rdb01   [2800971.777422] ixgbe 0000:3b:00.0 ens2f0: Reset adapter  

rdb01   [2801357.821650] ixgbe 0000:3b:00.0 ens2f0: Detected Tx Unit Hang  

rdb01   [2801357.821650]   Tx Queue             <22>  

rdb01   [2801357.821650]   TDH, TDT             <151>, <1ab>  

rdb01   [2801357.821650]   next_to_use          <1ab>  

rdb01   [2801357.821650]   next_to_clean        <151>  

rdb01   [2801357.821650] tx_buffer_info[next_to_clean]  

rdb01   [2801357.821650]   time_stamp           <1a6f5332b>  

rdb01   [2801357.821650]   jiffies              <1a6f54381>  

}}}  

 
---  

Best regards,  

 Valery Mitsyn  

Hi All,  

 
опять проблема с s/w raid  

{{{  

[371995.155165] XFS (md0): log I/O error -5  

[371995.155169] XFS (md0): Filesystem has been shut down due to log error (0x2).  

[371995.155171] XFS (md0): Please unmount the filesystem and rectify the 

problem(s).  

}}}  

 
---  

Best regards,  

 Valery Mitsyn  

LOGmon estimation Human expert estimation 
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Real results: conclusions 
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1 )The model was able to detect errors that 
    the expert identified during real-life     
    operation and displays them in the form of 
    a pictogram 

 

 
2) The automated algorithm works faster 
    than a human 

 
3) The model is able to detect errors that 
    were not contained in the training 
    sample 
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Conclusions 

The model is implemented in the form of a software and hardware complex  

for the tasks of automating log recognition 
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Testing of the model showed that it recognizes 100% of errors in serial 

console log by tested period 

The developed LSTM neural model is trained and tested 

An augmented training dataset was created 

Developed a neural network algorithm for log monitoring 

The software allows report about suspension logs in real-life operation 
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Logs errors type 
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Error type example Error description 

Kernel panic - not syncing: Fatal exception  

Kernel panic - not syncing: Fatal hardware error! 

kernel panic - Linux kernel 

crashes 

ixgbe 0000:01:00.0 em1: NIC Link is Down network errors - 

disconnection of network 

interfaces 

blk_update_request: critical medium error, dev sdn, sector 18015416216 critical medium errors - 

critical hard drive errors 

blk_update_request: I/O error, dev sdh, sector 12810658040 correctable hard drive 

errors 

<IRQ>  [<ffffffff997b1bec>] dump_stack+0x19/0x1f 

segfault at a9 ip 00007f46d2dff535 sp 00007f46af7fc6f0 error 4 in 

libpython2.7.so.1.0[7f46d2d77000+17e000] 

kernel errors 

UEFI0330: One or more memory errors have occurred during the Double 

Data Rate 

uncorrectable memory 

errors 

mce: [Hardware Error]: Machine check: Processor context corrupt hardware errors 

md/raid1:md1: Disk failure on sda1, disabling device Raid errors 

1657080.156077] systemd-shutdown[1]: Failed to wait for process: Protocol 

error 

 

good - normal state of logs 
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Solution to the problem of unbalanced 

classes: generating logs  
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Logs gathering 

Logs processing 

Logs generation 
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Gathering data from serial consoles 

Serial 

 console  

logs 

Gathering 

data  

script 

TSDB 

Loki 

 

Server 
Serial  

Console server 

Database  

server 
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Program realization: icingaweb interface 
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Metrics for LOGmon Efficiency 
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accuracy = (true_positive+true_negative) / 

(true_positive+true_negative+false_positive+false_negative)  

* 100% 

 

precision = (true_positive)/(true_positive+false_positive)  

* 100% 

recall = TPR = true_positive/(true_positive+false_negative) 

* 100% 

 

probability of error detection = true_negative model prediction 

/ true_negative real * 100% 
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Metrics for LOGmon Efficiency 
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accuracy = (true_positive+true_negative) / 

(true_positive+true_negative+false_positive+false_negative) 

 

precision = (true_positive)/(true_positive+false_positive) 

recall = TPR = true_positive/(true_positive+false_negative) 

Sp = TNR = true_negative/(true_positive)+false_positive) 

purity = (1 - precision) 

 

f1_score = F1 = (2 * true_positive)/ 

(2*true_positive_list+false_positive+false_negative) 

 

probability of error detection = true_negative model 

prediction / true_negative real * 100% 

 

 


