
LOGO

Kashunin I.,

 Ososkov G., Baranov A.,

Lysenko E., Uzhinsky A.

July 2025

System logs automated analysis

of serial consoles of JINR MLIT

MICC servers

COMPANY LOGO

MICC – multifunctional information computing

complex

1

General view of JINR MICC

LITmon – MICC monitoring system

COMPANY LOGO 2

Introduction

LITmon

 alert

 reporter

Log

 recognition

algorithm

Model

We need a convenient

tool that will report possible

 problems and do the work of

 administrators itself, involving

 them only in extreme cases

It is necessary to develop

a system that will classify

logs and aggregate results

under certain conditions

The neural network

approach has proven

itself well for analyzing

 text information

COMPANY LOGO

Linux serial consoles

3

It is necessary to analyze all existing serial consoles logs, which contain more than a

million lines. The logs contain data for 3 years. This will require a lot of time

investment.

COMPANY LOGO 4

LITmon alert reporter development

 1) Collect training data for dataset

 2) Develop and train a neural model

 3) Automate loading logs into the model
 and display the results of recognition in
 a web interface

COMPANY LOGO

Creating of data set

The control, computing

and disk servers

5

Number of errors in the training set by type Real

units

Generated

units

Type 1 kernel panic - Linux kernel crashes 110 4190

Type 2 network errors - disconnection of

network interfaces

460 4098

Type 3 critical medium errors - critical hard drive

errors

1802 4102

Type 4 blk_update - correctable hard drive

errors

4035

4035

Type 5 kernel errors - kernel errors 372 4257

Type 6 uncorrectable memory errors -

uncorrectable memory errors

77 4077

Type 7 hardware errors - hardware errors 1137 3732

Type 8 raid errors 142 4102

Type 0 good - normal state of logs 3128 3128

COMPANY LOGO

 Embedding layer of 128

 Hidden layer of LSTM cells of 256

 Output layer of 9

Neural model testing

Creating neural model

Tokenizing data

Collected data from the log database

Model development based on LSTM

6

 Testing neuro model on 2 weeks

of logs

 From words to numbers

 Filtering logs by regular

expression and drop it

not corresponding to

certain class

COMPANY LOGO

LSTM (Long short-term memory)
neural model constriction

7

 Embedding layer size - 128

 Hidden layer of LSTM cells of 256

 Output layer size - 9

 Loss function: cross entropy

Activation function: linear

ADAM optimizer

COMPANY LOGO

LOGmon model testing results for 2

weeks

8

Number of errors in the

training set by type

Units

LOGmon

Units

real

correctable_disk_error 927 31

kernel_errors 13 13

hardware_errors 36 0

critical_disk_errors 10 9

kernel_panic 10 2

network_errors 3 1

uncorrectable_memory

_errors
3 1

raid_errors 7 1

unknown 69 -

If probability < 60% -

unknown

 accuracy = 0.9771

 precision = 1.0

 recall = 0.9769

 Sp = 0.0133

 purity = 0.0

 f1_score = 0.9883

 log_recognition = 0.99

number_of_test = 29242

probability_error_recognition = 100%

probability of error detection = true_negative model prediction / true_negative real * 100%

COMPANY LOGO

Program realization: structural diagram for
automation of log recognition process

9

1) Serial console servers gather data from MICC servers
and sent it to Loki DB

 2) LITmon runs a special plugin
for log monitoring This plugin
accesses the system log analysis
system. This system downloads
data from the Loki database and
runs LOGmon model to classify
serial consoles system logs.

3) The results of classification and
statistical data are displayed on
various
dashboards

COMPANY LOGO

Program realization: Grafana dashboard

10
Recognized logs

Select Host and error type

COMPANY LOGO

Real results: examples

11

уже несколько таких ошибок на консоле:

{{{

rdb01 [2800971.777422] ixgbe 0000:3b:00.0 ens2f0: Reset adapter

rdb01 [2801357.821650] ixgbe 0000:3b:00.0 ens2f0: Detected Tx Unit Hang

rdb01 [2801357.821650] Tx Queue <22>

rdb01 [2801357.821650] TDH, TDT <151>, <1ab>

rdb01 [2801357.821650] next_to_use <1ab>

rdb01 [2801357.821650] next_to_clean <151>

rdb01 [2801357.821650] tx_buffer_info[next_to_clean]

rdb01 [2801357.821650] time_stamp <1a6f5332b>

rdb01 [2801357.821650] jiffies <1a6f54381>

}}}

Best regards,

 Valery Mitsyn

Hi All,

опять проблема с s/w raid

{{{

[371995.155165] XFS (md0): log I/O error -5

[371995.155169] XFS (md0): Filesystem has been shut down due to log error (0x2).

[371995.155171] XFS (md0): Please unmount the filesystem and rectify the

problem(s).

}}}

Best regards,

 Valery Mitsyn

LOGmon estimation Human expert estimation

COMPANY LOGO

Real results: conclusions

12

1)The model was able to detect errors that
 the expert identified during real-life
 operation and displays them in the form of
 a pictogram

2) The automated algorithm works faster
 than a human

3) The model is able to detect errors that
 were not contained in the training
 sample

COMPANY LOGO

Conclusions

The model is implemented in the form of a software and hardware complex

for the tasks of automating log recognition

13

Testing of the model showed that it recognizes 100% of errors in serial

console log by tested period

The developed LSTM neural model is trained and tested

An augmented training dataset was created

Developed a neural network algorithm for log monitoring

The software allows report about suspension logs in real-life operation

LOGO

LOGO

COMPANY LOGO

Logs errors type

5

Error type example Error description

Kernel panic - not syncing: Fatal exception

Kernel panic - not syncing: Fatal hardware error!

kernel panic - Linux kernel

crashes

ixgbe 0000:01:00.0 em1: NIC Link is Down network errors -

disconnection of network

interfaces

blk_update_request: critical medium error, dev sdn, sector 18015416216 critical medium errors -

critical hard drive errors

blk_update_request: I/O error, dev sdh, sector 12810658040 correctable hard drive

errors

<IRQ> [<ffffffff997b1bec>] dump_stack+0x19/0x1f

segfault at a9 ip 00007f46d2dff535 sp 00007f46af7fc6f0 error 4 in

libpython2.7.so.1.0[7f46d2d77000+17e000]

kernel errors

UEFI0330: One or more memory errors have occurred during the Double

Data Rate

uncorrectable memory

errors

mce: [Hardware Error]: Machine check: Processor context corrupt hardware errors

md/raid1:md1: Disk failure on sda1, disabling device Raid errors

1657080.156077] systemd-shutdown[1]: Failed to wait for process: Protocol

error

good - normal state of logs

COMPANY LOGO

Solution to the problem of unbalanced

classes: generating logs

6

Logs gathering

Logs processing

Logs generation

COMPANY LOGO 4

Gathering data from serial consoles

Serial

 console

logs

Gathering

data

script

TSDB

Loki

Server
Serial

Console server

Database

server

COMPANY LOGO

Program realization: icingaweb interface

14

COMPANY LOGO

Metrics for LOGmon Efficiency

16

accuracy = (true_positive+true_negative) /

(true_positive+true_negative+false_positive+false_negative)

* 100%

precision = (true_positive)/(true_positive+false_positive)

* 100%

recall = TPR = true_positive/(true_positive+false_negative)

* 100%

probability of error detection = true_negative model prediction

/ true_negative real * 100%

COMPANY LOGO

www.themegallery.com

Metrics for LOGmon Efficiency

14

accuracy = (true_positive+true_negative) /

(true_positive+true_negative+false_positive+false_negative)

precision = (true_positive)/(true_positive+false_positive)

recall = TPR = true_positive/(true_positive+false_negative)

Sp = TNR = true_negative/(true_positive)+false_positive)

purity = (1 - precision)

f1_score = F1 = (2 * true_positive)/

(2*true_positive_list+false_positive+false_negative)

probability of error detection = true_negative model

prediction / true_negative real * 100%

