
Design of the Data Quality
Monitoring system for the BM@N

experiment
Igor Alexandrov, Evgeny Alexandrov,Alexander Chebotov, Konstantin Gertsenberger

JINR, MLIT, LHEP

11th International Conference GRID 2025

7-11 July 2025, Dubna, JINR

Joint Institute for Nuclear Research

Outlines

• Goals of the system creation

• Short review of DQM/DQA systems in LHC experiments

• General architecture

• Object model of the histogram producer and analyzer interfaces

• DQM processes and data flow

• DQM configuration description

• Example of the possible DQM configuration

• Database schema

• Alarms behavior

• Possible view for DQM shifter WEB GUI
2

Data Quality Monitoring (DQM) and Quality Assurance (QA) :
Goals of the systems

• Data Quality Monitoring and Quality Assurance system for the BM@N
experiment should be developed to provide control histograms in the same way
in 3 modes
• for online decoding and reconstruction (online data monitoring)
• for qualitative assessment of new BmnRoot versions (after MRs)
• for manual run to check user versions of the software

• The BM@N DQA architecture must ensure predefined checks and graphical
representation of control histograms on a central Web service, which receives
the displayed data distributions from the BM@N histogram producer (DQA
central manager)

• The DQA system must provide the ability to easily add new control histograms
with predefined checks and alerts in a user-friendly format (suitable for
physicists and detector team, who are not developers), for instance, using JSON-
description

3

DQM & QA systems in LHC experiments

• Some interesting ideas in the LHC experiments:
• produce some sampling (events go to the DQM depending on their frequency after trigger system)

• message passing technique, scalability (ALICE)

• set the rate for DQM input

• produce histograms as main input for the DQM
• but not only histograms can be used for quality check

• moving as much as possible to automation of data quality assurance
• flexibility in using check algorithms (storing sources of algorithms, their names and parameters, what to

be on output, destination and other in DQM database)
• loading from its library the check algorithm as implementation of interface (ATLAS)

• some interfaces have thresholds as parameters in order to create results: bad or good event

• some of check algorithms
• empty histogram (a threshold)

• counters of subdetector responses by sectors

• Kolmogorov-Smirnov test

• moving to rich shifter GUI, mostly web GUI
• different base tools/languages for implementation (python as an example in ALICE, C++ in ATLAS)

• alarms in case of high probability that events have bad quality

• ALL these experiments suppose to use ML-based (machine learning) quality assessment in Run 4

4

The DQM General architecture

5

Object model of the histogram creator and analyzer classes

6

DataQuality (enumeration)
(good, bad, warning, undefined, disable)

HistogramInfo
 string name
 string title
 int dimension
 string X title
 string Y title
 map<string,string> options

Histogram
 string histogram_path
 bool is_cumulative
 string produce_algorithm
 string analyze_algorithm
 int period_number
 int run_number
 int event_number

Producer
 Map<string, ProduceAlgorithm> produce_names
 string configuration
 inputStream sampler_addr
 outputStream analyzer_addr
 TTree event_data
 TH1D/TH2D createHistogram(HistogramInfo hinfo)
 fillHistogram(TH1D/TH2D &histo,TTree event_data)

AnalysisResult
 int period_number
 int run_number
 int event_number
 int sampler_rate
 string histogram_path
 bool is_cumulative
 string produce_ algorithm
 string analysis_ algorithm
 TH1D/TH2D

histogram_object
 DataQuality quality_result
 string alert_message

Analyzer
 string configuration
 Map<string, AnalyzeAlgorithm> analize_names
 string database_name
 inputStream producer_addr
 outputStream database_addr
 outputStream webui_addr
 TH1D/TH2D event_histogram
 map<string, TH1D/TH2D> cumulative_histograms
 AnalysisResult analysis_result
 AnalysisResult checkHistogram(TH1D/TH2D rootHisto)

DataBase

uses

creates check
produce

WEB UI

BMNEvent
 int periodNember
 int runNumber
 int eventNumber
 TTree data

Sampler
 string configuration
 inputStream input_data_addr
 outputStream producer_addr
 int sampler_rate

sends

gets

ProduceAlgorithm
 fillHistogram(TH1D/TH2D &histo,TTree event_data)

AnalizeAlgoritnm
 AnalysisResult checkHistogram(TH1D/TH2D rootHisto)

implements

implements

histogram

BMNEvent

analisesisResultanalisesisResultanalisesisResultanalisesisResult

analisesisResult

The DQM processes and data flow

7

Sampler
Histogram producer
Histogram producer
Histogram producer

Histogram analyzer
Histogram analyzer

Histogram analyzer

DQM DB

WEB UI

events
events

histograms

DQM result

DQM result

• stores cumulative histograms DQM result for
each run

• stores non-cumulative histograms only for DQM
result BAD

ZeroMQ

ZeroMQ
ZeroMQ

DQM configuration description

• The configuration for running DQM is stored in JSON format in a file that
contains all the information concerning
• sampler (event selector for data quality assurance) and histogram producer

• addresses of the database and Web interface

• analyzers to be applied to the histograms

• The description of the histograms is stored in JSON format and is splitted
into separate files so that:
• each detector group can describe histograms only related to their tasks

• histograms not related to the group will not be contained in their configuration
file

• all JSON-files with the description of the histograms are loaded when the DQM
system starts

• The content of the JSON files corresponds to the given object model

8

Example of the possible DQM configuration

9

{ "DQM_SETUP": "setup1",
"histogram_library": "lib/histograms_produce_alg",
"analizer_library": "lib/dqm_analiz_alg",

"tasks": [
{

"task_gem" : {
"producer_input" : "host1:20001",
"analyzer_input" : "host2:20002",
"database “ : “host3:20000”,
“web” : “host4:8000”,
"histogram": {

"tree_path" : "GEM/Silicon",
“alg_name" : "statistics",
"cumulative": : "true",
"info": {

"name": "statistics_gems",
"title": "Statistics GEM Silicon",
"x title": "Number of digits in event silicon",
"y title": "Number of digits in event GEM",
“dimension" : "2" , "//comment1":"TH2D in use",
"Options" : { "//comment2" : "draw options,
color options, text options, SURFace options etc",

"c_opt" : "c",
"arr_opt" : "arr",
"line_color" : "red",
"fill_color" : "grey“

}
}

, "sampler" : {
"input": "host1:20000",
"out" : ["host1:20001","host2:20004"],
"rate" : ["10", "5"]

}
}

"analize" {
[{

"analize1" : {
“alg_name": “kolmogorov_alg",
"cumulative" : "true",
"parameters" : {

"threshould1" : "10",
"threshould2" : "15"

}
"draw_out": “hostm:8000"

}
},{ "analize2" : {

“alg_name": "empty_check2",
"cumulative" : "false",
"parameters" : {

"threshould1" : "1",
"threshould2" : "4"

}
}

}] }
} , //comment3" : "END task_gem“,

},{
"task_gem_station" : { "histogram": {

“producer_input": "host1:20004",
"etc" : "......" }

} }]

DQM database schema

10

Alarms description

• Alarm is displayed in Web UI

• Alarm is raised when DQM result value is BAD

• GREEN color is used to display the data quality value when the DQM
value is GOOD, RED color – if the value is BAD

• DQM tree colors in Web UI
• If all children of some DQM root are GOOD, then the name of this root is

displayed in GREEN

• If any child of DQM tree directory is BAD
• the name of this child element is displayed in RED

• all parents' names are displayed in ORANGE

11

Possible view for DQM shifter WEB GUI

12

Time: 15:04:07 Run Number: 2900
Run State: RUNNING Event Number: 150036

State: GOOD

 Root TREE
 GEM Station

 Module 0
 Layer 0
 Layer 1

 Module 1
 Module 2
 ……..

 GEM Silicon

ALAM LOG

Conclusion

• The goals of the system are described

• Review of LHC experiments DQM and DQA systems is presented with estimation of
possibility to use in BM@N system some ideas and solutions

• DQM system general architecture and system framework is shown

• Object model of the histogram creator and analyzer interfaces are presented.

• DQM configuration description and database schema are described

• The alarms behavior are shown

• The preliminary view of the Web GUI for shift operators is presented

Thank you for your attention!

13

BACKUP

14

DQM & QA systems in LHC experiments: ATLAS

• ATLAS: light, flexible (input-output-configuration interfaces, algorithms as plugins)
• DQM Core: executes DQ Algorithms (any common operation like histogram comparison, histogram

fitting, thresholds application, etc.); has three abstract interfaces for the communication with the
external systems
• DQM Input (receives histograms, messages, counters)
• DQM Output (way of publishing DQ Results produced by the DQ algorithms)
• DQM Configuration interface (way of reading configuration info which defines behavior of the DQM

Core in a specific environment)
• DQ Configuration is described as a hierarchical tree of objects of two different types: DQ

Regions and DQ Parameters.
• DQ Region

• Children (DQ Region or DQ Parameter)
• DQ Summary Maker

• DQ Parameter
• location of the monitoring information (represents the state of a particular detector element)
• weight
• DQ Algorithm that has to be used
• specific parameters and thresholds
• reference values or histograms
• the actions which have to be taken depending on the results

15

DQM & QA systems in LHC experiments : ATLAS (2)
DQ Algorithm

DQM Framework (DQMF) provides a number of predefined DQ Algorithms
DQ Algorithms are integrated into the DQMF in a dynamic plug-in manner

allows adding new algorithms on the fly without modifying the core software

each DQ Parameter has at least one DQ Algorithm associated with it
executed whenever a piece of info which is associated with that DQ Parameter
becomes available

DQ Summary Maker
special implementation of the DQ Algorithm interface that evaluates the DQ Result
for a given DQ Region

DQMF Agent
instantiates appropriate implementations of the DQMF generic interfaces (i.e. DQM
Input, DQM Output and DQM Configuration)
takes care of starting and stopping the DQM Core engine in appropriate moments

In the online environment the DQ assessment has to be started at start of run event and stopped
when the run is finished

DQMF may contain one or more DQMF Agents with each of them responsible for a
well defined subset of the whole ATLAS system.

DQ Result
consist of a colored tag and any output that the algorithms might want to attach

If some areas of the detector are disabled, then the corresponding dq results will be black
otherwise, results might be

green (good), yellow (warning), red (bad) or gray (undefined)

16

Data Quality Monitoring (DQM) and Quality Assurance (QA) :
Goals of the systems

• histogram creation tool
• interface for histograms creation
• library with simple implementations of this interface

• create flexible tool for online creation, filling,
transport and archival of histogram and other
monitor elements

• create flexible online tool to perform algorithms
for automated quality and validity tests

• keep the results of the DQM process

• create GUI for DQM user
• visualization of the histograms and quality test results
• alarms in case of bad quality data

17

Main goals
 online and offline data

quality check and results
visualization

 fast automation reaction on
data quality problems

DQM & QA systems in LHC experiments : ALICE

• ALICE: DQM + QA = Data Quality Control (DQC)
• largest DQC systems worldwide
• first in the high energy physics community to leverage the message passing

technique and the actor model to such an extent
• high-level quality assessment of the 3.5 TB/s data produced by the detector

• QC system
• multi-step process

• sampling the data, usually at a rate of 1%
• QC Tasks will then execute user-defined algorithms to process it and generate a QC

Object, often a histogram
• Given the parallel nature of this processing, with a copy of the task running on each of

the hundreds of nodes, these histograms are then merged
• merged results are evaluated by a series of Checks to determine one or several

Qualities, which can themselves be aggregated to give a general assessment of the
health of the data

• based on a message passing paradigm where data flows asynchronously
through a set of devices connected via buffered channels

• channels use ZeroMQ by passing either the whole message payloads or just
pointers to the shared memory region

• QC Objects and Qualities are stored in Conditions Database

18

DQM & QA systems in LHC experiments : LHCb
• LHCb: collected data are grouped together in runs

• LHCb DQ workflow
• small subset of the data selected by the trigger is fully-reconstructed on the LHCb Online computing farm
• reconstruction produces sets of histograms which allow the (sub-)detector performance to be assessed
• these histograms are presented by the Data Quality Monitoring(DQM) software to the DQ shifter
• shifter compares whether the run is suitable for physics analysis or not, by comparing it to a reference run previously set by experts.
• software package previously used in DQM shifts, was based on dedicated custom C++ code and X Window System. Now implemented

“Monet” which is a python based web application that supersedes the Presenter.

• Update
• using Python as the primary language allows the usage of rich set of libraries provided in the large ecosystem of third-party Python

packages. This simplifies both development, as common functionality has already been implemented elsewhere, and maintainability, as the
size of the required LHCb specific code is reduced.

• for plotting Bokeh libraries provide interactive plots in web browsers, has pythonic interface

• RoboShifter: automatic problem detection
• predicts probability of given run being bad
• decisions made by each tree are summed with weights, representing the importance of each tree
• each tree corresponds to a single histogram
• possible to compute, for each histogram, its contribution to the probability of the run being bad
• histograms with the highest contributions can be presented to DQ shifter as potentially problematic ones.

• Machine learning at LHCb: vector Kolmogorov-Smirnov distances btw histograms and their references; AdaBoost
algorithm,

• track pattern recognition
• long track reconstruction
• downstream Track Reconstruction (reconstruction of the daughters of long-lived particles)
• fake track rejection
• topological trigger (HLT2)
• jet tagging
• charged particle identification 19

DQM & QA systems in LHC experiments : CMS

• CMS: The DQM software is a central tool in the CMS experiment. High-level
goal of the system is to discover and pin-point errors - problems occurring in
detector hardware or reconstruction software
• tools for

• creation, filling, transport and archival of histogram and scalar monitor elements
• standardized algorithms for performing automated quality and validity tests on value distributions

• monitoring systems live online for
• the detector, the trigger, and the DAQ hardware status and data throughput,
• the online reconstruction
• validating calibration results, software releases and simulated data

• visualization of the monitoring results
• certification of datasets and subsets thereof for physics analyses
• retrieval of DQM quantities from the conditions database
• standardization and integration of DQM components in CMS software releases
• organization and operation of the activities, including shifts and tutorials

20

The DQM tree

DQM Configuration keeps set of DQM Tree in
JSON format.

• DQ Tree
• Histogram producer library (plugins)
• Analizer library (plugins)

• DQ Region … DQ Region
• DQ summary maker
• DQ Parameter

• Input from sampler
• Histogram producer

• Algorithm for histogram creation (name of plugin to be loaded and used to
produce histograms)

• Output with histogram produced - histogram input for tester
• Analyzer (quality tester)

• histogram input (from previous output)
• Algorithm (quality checker algorithm)
• Threshold (numbers to understand if histogram good or bad)
• Output

• result (good, bad, undefined, disable)
• DQ Tree path
• histogram

21

DQ Tree

DQ Region

DQ Parameter

DQ Region DQ Region

DQ Region

DQ Parameter

The DQM framework

22

Sampler

Histogram
creator

Histogram
analyzer

Configuration manager start correspond DQ setup

Histograms (ZeroMQ)
Events with correspond
rate (ZeroMQ)

DQA databaseDQ result

DQ result
Alerts

Web
GUI

DQ configurationDQ configuration

DQ configuration

digitized events

Example of the possible DQM configuration

23

{
"DQM_SETUP": "setup1",
"histogram_library": "lib/histograms",
"analizer_library": "lib/dqm_analiz",

"tasks": [
{

"task_gem" : {
"histogram": {

"tree_path" : "GEM/Silicon",
"plugin_name" : "statistics",
"cumulative": : "true",
"input": "host1:20001",
"output1": "host2:20002",
"output2": "host2:20003",
"info": {

"name": "statistics_gems",
"title": "Statistics GEM Silicon",
"x title": "Number of digits in event silicon",
"y title": "Number of digits in event GEM",
"category" : "D", "//comment1":"C,S,I,L,F,D",
"Dimensions" : {
"XDim" : { "xbin":"40", "xlow": "-3", "xup" : "100" },
"YDim" : { "ybin" : "50", "ylow" : "0", "yup" : "60" }.
"ZDim" : { "zbin" : "0", "zlow" : "0", "zup" : 0 }

},

},{ "analize2" : {
"plugin_name": "empty_check",
"cumulative" : "false",
"parameters" : {

"threshould1" : "1",
"threshould2" : "4"

}
"draw_out": "DQMmonitor2.html"

} }] }
} , //comment3" : "END task_gem"

}, { "task_gem_station" : {
"input": "host1:20004",
"etc" : "......" }

}, {
"sampler" : {

"input": "host1:20000",
"out" : ["host1:20001","host2:20004"

],
"rate" : ["10", "5"]

}
}]
}

"Options" : { "//comment2" : "draw options,
color options, text options, CONT options, LEGO
options, SURFace options etc",

"opt_lego" : "lego",
"c_opt" : "c",
"arr_opt" : "arr",
"line_color" : "red",
"fill_color" : "grey"

}
}

}
"analize" {

dbase": "db:sql2000",
[{

"analize1" : {
"plugin_name": "empty_check",
"cumulative" : "true",
"parameters" : {

"threshould1" : "10",
"threshould2" : "15"

}
"draw_out": "DQMmonitoring1.html"

}

