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About TAIGA-HiSCORE
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TAIGA-HiSCORE is a large-scale (1 km²) array of  
wide-angle non-imaging Cherenkov detectors, 
spaced ~100 m apart, designed to detect and study 
extensive air showers (EAS) from primary cosmic 
rays and gamma rays

Each TAIGA-HiSCORE detector records:
● Light amplitudes (Cherenkov photon 

density)
● Signal arrival times

The fundamental challenge

Reconstruct the EAS parameters (core 
position, arrival direction, and energy of the 
primary particle) from detector signals



  

The conventional approach
to EAS parameter reconstruction
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The current shower reconstruction method is based on 
approximating the Cherenkov light distribution as a function of 
distance from the estimated EAS axis 

While effective, this method is simulation-dependent, having 
been empirically optimized and validated through Monte Carlo 
studies

Open questions:
● How optimal is the current method?

● Can we extract more information?

● What might we be missing?

The main question: Can we achieve better reconstruction 
accuracy?



  

Autoencoder for
EAS data analysis and control 
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Autoencoder (AE)
● Neural network that compresses input data into a latent space (essential 
features)

● Reconstructs data from this compact representation

Our AE Implementation
● Trained on TAIGA-HiSCORE events

● Latent space captures meaningful EAS features

Key Applications

Interpretation: Reconstruct EAS parameters from latent space

Control: Generate synthetic TAIGA-like data with tunable EAS parameters



  

General architecture of the system 
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AE acts as a data compressor: the dimensionality of the latent space (N) is significantly 
smaller than that of the input data. N is a parameter to be optimized



  

Architecture of the AE

07.20255/14

 
The decoder is mostly 

symmetrical with the 
encoder, with Conv2D 
layers replaced by 
Conv2DTranspose

We train our AE on 
augmented Monte Carlo 
simulation data for 
gamma quanta with 
58,600 events



  

Results for the AE: Image reconstruction
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A Monte-Carlo event restored by the AE with 12 latent parameters. Time is denoted by 
circle color and amplitude is denoted by size. Grey circles denote untriggered stations

Coefficients of determination (R2) for restored quasi-images depending on the latent 
space dimension N of the AE (N = 4, 6, 8, 12, 16, 20)



  

Interpretation of essential features:
Neural network for EAS parameter reconstruction
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The neural network to derive EAS parameters from AE’s latents space is a 
multi-layer perceptron 

Input: N=4, 6, 8, 12, or 16 values   according to the dimensionality of the latent 
space

Output: a set of EAS parameters (K values)

We validate the method specifically for energy reconstruction (K=1 test case)

 Network architecture 

We train this network on 35,500 sets of latent features along with the energy values   of the 
corresponding Monte Carlo gamma quanta events 



  

Selecting the dimension of the latent space 
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The distribution of the relative 
error of energy reconstruction 
for different values   of N 
(dimension of the latent space):

Energyt – real energy valueEnergyr – predicted (reconstructed) 
energy value



  

Energy reconstruction for different energy bins
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For N=12, we compare the 
distributions of relative errors of 
energy reconstruction for 5 
different energy ranges (bins)

The energy bins are intervals 
used to group energy values, 
the bin widths are chosen so 
that each bin contains 
approximately the same 
number of events



  

Control of essential features:
Neural network to map EAS parameters to AE’s latent space
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Input: K= 8 EAS parameters*

*primary particle type and energy, shower direction (zenith and azimuth angles), first 
interaction height, shower maximum depth (Xmax), and core position coordinates (X, Y)

Output: N = 12 latent features

We train this network on 34,816 sets of EAS parameters along with 
corresponding latent features for Monte Carlo gamma quanta events 

 Network architecture 

The neural network is a multi-layer perceptron with ResNet-like skip 
connections: one fully connected layer followed by 10 residue learning blocks of 
2 fully connected layers

Total hidden layers: 21

Neurons per layer: 180 



  

Validating Generated Latent Features 
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Histograms of absolute errors between generated and target latent feature values, binned 
by primary energy range (in total 5 bins)



  

Parameter-Controlled Shower Image Synthesis 
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Two Monte Carlo vs generated events; the right panels show timing errors 



  

Conclusion 
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We demonstrate that an autoencoder can be trained to compress data from 121 TAIGA 
HiSCORE stations into 12 latent parameters with good reconstruction fidelity. The latent 
space of the autoencoder can be used to reconstruct the parameters of the primary particle 
as well as to generate synthetic TAIGA-like data with tunable parameters

Interpretation of essential features:

● Using the example of determining the energy of the primary particle for TAIGA-HiSCORE 
data, it is shown that the latent space dimension of 12 features is a reasonable choice 

● The standard deviation of the relative energy reconstruction error is 20-25% for energies 
from 100 to 400 TeV and 13-15% for energies from 400 to 1000 TeV, which is comparable 
with the results obtained by the conventional methods

Control of essential features:

● Regarding the generation of essential features and corresponding images for specified 
physical parameters, the method has shown promising results with relatively low error rates

● The synthetic data constructed from EAS parameters approximate the respective Monte 
Carlo simulated data reasonably well but less accurately than their reconstruction by the 
autoencoder

We anticipate these results will benefit multimodal analysis (joint processing of data from 
different detector types), enabling seamless integration of latent parameters and improving 
overall reconstruction accuracy
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Thank you for attention! 
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Input data and loss function for the AE
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The positions of 121 HiSCORE stations are approximated by a 17x12 
rectangular grid. The input data for the AE have 4 channels:

● amplitude A (number of photoelectrons)
● average time t of photoelectrons detected by the station
● standard deviation of photoelectron detection times
● trigger indicator

The AE reconstructs all these values using the loss function:

L = C
t
 L

t
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A
 L

A
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s.d.t.
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trigger
 L

trigger
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trigger

 is binary cross-entropy, L
A
 and L

s.d.t
 are masked MSE, and L

t
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masked MSE multiplied by lg A

The coefficients are: C
t
 = 10, C

A
 = 1, C

s.d.t.
 = 0.5, C

trigger
 = 0.0005

Masked loss function components let AE keep nonzero values for the stations 
with the detected signal below the threshold (100 ph.e.) or missing stations, 
theoretically allowing AE to make physically plausible estimates for would-be 
detection times

Additionally, 17x12x3 station coordinate corrections are given as auxiliary inputs 
to both encoder and decoder



  

R2 for generated images
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