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TAIGA experiment

 The TAIGA experimental setup is
located in the Tunka Valley (50 km from
Lake Baikal) in the Republic of Buryatia.
The setup includes several different
detectors: TAIGA-IACT, HISCORE,
TUNKA-133, and others.

* \We consider the problem of identifying
rare gamma events using the example
of data from the Imaging Atmospheric
Cherenkov Telescope (IACT).

 The TAIGA-IACT setup consists of 4
IACTs, which are reflector telescopes
with a 4-meter segmented spherical
mirror. At the focus of the telescope is a
camera with about 600 photomultipliers
for recording Cherenkov radiation
emitted by extensive air showers (EAS).
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Methods for extracting gamma ev:

* Traditional method - Hillas parameter
cutting

Machine learning
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reatures or experimental data in
gamma-ray astronomy

* The main flux of cosmic rays is charged particles:
* Protons, helium nuclei,
* Oxygen, nitrogen, ..., iron, ...

* The fraction of ultra-high energy gamma quanta is less than
0.1%.

* Cherenkov light from EAS, registered by the IACTs, is very
weak - from several tens of photoelectrons.

* High noise level.

* Low resolution: the camera matrix of only several hundred
PMTs.

* TAIGA-IACT ~ 600 PMTs
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Anomalous Events vs Rare
Events

Rear events Two-class
learning

Training set: R~N Tesing set: R«N

" nigdenlaver1  nissen layer 2

Classifier

Anomalous events One-class
learning

(?)

Training set: A«N Tesing set: A~N




Normalizing Flow

* NF transforms a simple distribution of a random vector into a ¢

* This is done using a chain of one-to-one transformations.

The algorlthm is based on the theorem on the change
tegral.
.




Algorithm for identifying
anomaly events

1) Selection/extraction of essential features (dimensionality reduction) of data.

2) Transformation of the distribution of non-anomalous data in the training set
into a normal one N(0,1).

* Events in the original distribution will be concentrated around the mean
values (zero) of the normal distribution.

» Since the mapping is optimized for a sample of non-anomalous data,
anomalous events will have a low probability.

3) In the original space with a complex distribution (we only have a finite
sample), it is difficult to draw a boundary between normal and anomalous

data.

4) For a normal distribution, it is easy, for example, the boundary is set at
20(95%)

"Feature extractor"
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£i3 ™ PFI(ZE—I)
z; = fi(zj_1), thus z;_1 = f(2;)

df"
pi(zi) = pi—1(f(z;)) |det
dz,
-1
= p;_l(z,- 1 det ( ) <— the inverse func theorem.
dZ, 1
df, |7t
= p,-_l(z,-_l) det <= Jacobians of invertible func.
dzr—l

log pi(z;) = log pi—1(zi-1) — log |det



NF transformation chain

It is necessary to construct a chain of transformation

* The Jacobian of the transformation is easily c
triangular matrix.

inverse functions are easily calcul

Yd+1:D = Xd+1:p © eXP(Cf(Xlzd)) T ﬂ(xl:d)

N {xl:d = Yz (3)

Xd4+1:D = (Yd+1:D = M(Yl:d)) ® eXP(—J(YLd))




NF transformation chain

e Jacobian matrix is triangle

f~' does not require computing the inverse of o or

not involve computing the Jacobian of o or y, = ca
arbitrarily complex;

bth o0 and p can be modeled by deep neurs

L4 04+ (D-0a)

J =
33*3:;!(& diag(exp(o(x1.4)))




NF using TAIGA-IACT as an
example

* Hillas parameters included in NF training

* Size> 100
* 0.02 <Width <0.8
- * Alpha<20




Hadrons as normal even
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Gammas as normal eve
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Concilusions

* |t was demonstrated on small neural network models that normalizing flows have the
potential to isolate rare gamma events.

* The most promising application of NF is the case when protons events rather than
gamma events are considered anomalous.

* Preliminary analysis has shown that simple NF models do not provide reliable extraction
of gamma events. Possible reasons are:

* small size of the training set;

* itis necessary to use advanced neural network NF models with a large number of
transformation blocks, layers and neurons in layers;

» a poor choice of the input parameter set.

 We have plans to continue research this method on more complex models and much
larger training samples.

* In particular, a variant of two-class classification with NF, when a normal event has
a positive weight in the loss function, and anomalous events have a negative
weight.

* We propose to study the possibility of replacing Monte Carlo events with experimental
data far from gamma sources as non-anomalous events.
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Thank you!
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