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SHiP Experiment
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● The Search for Hidden Particles (SHiP) - new 
experiment on  SPS CERN

● Fixed target
● 2x1020 target-proton interactions per 5 years, 4x1013 

protons per second



HNL sensitivity as a function of decay volume 
position 
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Closer to the target – higher 

sensitivity!



Muon Shield
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● One of the key components is the muon shield—a magnetic 
deflection system approximately 30 meters long, with a 
magnetic field of 1.7 T.

● Up to 42 parameters are required to define the muon shield’s 
configuration.

● The shielding effectiveness remains a topic of debate and 
discussion among several research groups.

● The expected muon flux suppression is approximately 6 
orders of magnitude, reducing the initial 10¹¹ muons per spill.

● The process of muons traversing the shielding is highly 
stochastic.



SC-Muon Shield
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● Proposal: Replace the first three magnets 
of the shield with a single short 
superconducting (SC) magnet (~5 T) to 
maintain the same integrated magnetic 
field strength.

● Optimization cycle (excluding FCN) 
remained unchanged.

● The number of parameters was reduced to 
29 (with the gap between the warm and 
SC sections now treated as a parameter).



Loss Function
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M - Muon Shield weight
M* - Constant
W

ℳ
 - Nonlinear function of the 

x-coordinate for a muon in T1

The dedicated muon sample is used for MC: 

● Generation stage weights have been removed.
● The sample size has been reduced to the minimum required for stable 

results.



New Loss Function
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Initial objective: the primary loss function was designed to 
optimize muon flux through the tracking station.

Additional requirements introduced later:

Minimizing flux through the SND, a penalty term was 
added to the base loss function to regulate SND-bound 
muons.

Minimizing flux through the veto detector (surrounding the 
decay volume):

A separate monitoring loss function was implemented (no 
direct optimization).

Optimization was performed exclusively using the 
augmented function from point 1.

F = W * (Tflux + SNDflux + 1)

W = a1 * Wsc + a2 * Wwarm

Tflux = a3 * max(0, ( T - Tgood))

SNDflux  = a4 * max(0, ( S - Sgood))

aᵢ – tunable parameters, T(aᵢ) – muon flux through 
tracking stations (equivalent to previous definition)

S(aᵢ) – Muon flux through SND (equivalent to 
previous definition)
Tₙᵢₙ / Sₙᵢₙ – "Good enough" flux values



Bayesian optimization 
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Global Bayesian Optimization of a "Black 
Box" System  delivers excellent results when 
the following conditions are met:

● Low dimensionality (<10 parameters)
● Continuous loss function (smooth 

behavior)
● Simple parameter space topology (no 

extreme nonlinearities or 
discontinuities)

● No gradient information available for 
the loss function



And if we consider non-gaussian prior?
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Our algorithm (WU-GO) is fundamentally an LCB 
(Lower Confidence Bound) approach, but with a 
custom uncertainty estimator replacing the 
predictive posterior variance.

Key Features:

● Balances exploitation-exploration within 
the LCB framework.

● Accounts for response stochasticity, similar 
to EGO (Efficient Global Optimization).

https://github.com/hse-cs/waggon



And if we want to achieve a local minimum? 
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Challenges in High-Dimensional Optimization -  Curse of 
dimensionality: global minima become exponentially harder 
to locate as parameter space grows.

Gradient descent is effective for local optimization but fails 
due to pathological curvature (e.g., ravines, saddle points) in 
the objective function and inability to backpropagate 
gradients through MC simulations (black-box stochasticity).

Proposed Solution - after known high-quality initial guess 
near the global minimum is found:

Train a generative surrogate model (e.g., neural network) to 
approximate simulation outputs.

Use the surrogate to enable gradient-based refinement from 
the initial point.

https://arxiv.org/abs/2002.04632



Computing setup
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The research was supported by Yandex.Cloud, really - my deep personal thanks!

● 54 Nodes
● ~ 58 GB RAM per Node
● ~ 30 CPU per Node 
● Not that much storage
● No any orchestration provided

3 different control approach was used during several years of the experiments:

● Wonderland (failed to find any actual information now)
● Disneyland:

○ Go language based docker orchestrator 
○ https://github.com/skygrid/disneyland/
○ MC results was uploaded to Cern EOS for the further processing

● Kubernetes:
○ actual setup
○ S3 Yandex Blob storage as an output for the further processing

https://github.com/skygrid/disneyland/


Simulation task
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To calculate a single point for the optimization we need:

● Generate new Shield parameters and pass them to the control Node
● Wait for resources to be free, and run #NTasks to calculate the total #NEvents from the MC 

sample(NEvents/NTasks per task)
● Wait all the tasks are completed successfully, re-run task if anything failed (if the number of re-runs is not too 

much, mark as “failed” otherwise)
● Process outputs, calculate FCN and uncertainties, run additional set of tasks if the statistical uncertainty is not 

satisfying
● Add new calculated point to surrogate and start a new iteration

The time to obtain a single iteration FCN value depends on: 

● total events amount to simulate (k*NEvents, typical k value is 1 actually, more simulation only for good points).
● NTasks - the number of jobs to which the initial MC sample is splitted. More tasks - less events per task to 

calculate, but there is some fixed time to start/process task, no need to split to. Also RAM is consumed by every 
task and actually this is the bottleneck.



Simulation sample
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The number of events in the initial sample critically determines the simulation runtime. There are 2 main samples:

● Full sample: 68GB of data, is stored locally on the every node, matches the one spill, is used to estimate the 
detector performance characteristics

● Optimisation sample: 50MB of data, stored inside the docker image, sampled from the full one, big enough to 
make the optimization results statistically stable in  most cases

During the investigation on the statistical uncertainties in optimization 

instabilities the problem of generation-step weight in the initial event

sample was found. The optimization sample was created with “weights

unrolling” approach, this allowed to reduce the size of the sample by

2 orders of magnitude while the initial number of events was kept. 

This approach was added to the standard FairSHiP generator code as 

an option.



RAM issues
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The performance of the FairSHiP builds was controlled with Intel VTune software. Still the RAM amount on Node  was 

the main bottleneck in the configuration used to run MC. After one of the simulation software update the RAM 

consumption was doubled. After short investigation the cause was found -  migration from flat geant fields to the field 

maps! The field maps were stored in the RAM as key-value pairs, where 3-dimensional coordinates were used as keys. 

To reduce the RAM consumption 2 ideas was implemented asap:

● Keep only ¼ of field maps, use the detector symmetry to recalculate the other parts.

● Remove keys, keep just the field values in some organized order as an array, store step sizes and overall field 

dimensions and center position - this allow to calculate array index from 3d-coordinate on-the-fly.



Optimization Stability issues

15

With 
steps

Without 
steps

Even with all hacks on previous 
slides still the optimization result 
stability could be improved with 
synthetic field maps and some 
geometry fluctuations. 



Optimization results
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Conclusions
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● FairSHiP software stack is pretty complex and some additional efforts 
was needed to make a convenient docker image updates possible

● Thousand of mc task should be run simultaneously to achieve the 
acceptable speed of optimization process 

● The MC software is profiled to provide the balanced load on resources 
avaible

● The optimization pipeline works smooth and provided a good results 
for several optimization tasks already


