
E. Kurbatov 1
F. Ratnikov 1

1HSE University

Muon Shield optimization for SHiP experiment as HTC MC task
GRID’2025

Dubna, 2025

SHiP Experiment

2

● The Search for Hidden Particles (SHiP) - new
experiment on SPS CERN

● Fixed target
● 2x1020 target-proton interactions per 5 years, 4x1013

protons per second

HNL sensitivity as a function of decay volume
position

3

Closer to the target – higher

sensitivity!

Muon Shield

4

● One of the key components is the muon shield—a magnetic
deflection system approximately 30 meters long, with a
magnetic field of 1.7 T.

● Up to 42 parameters are required to define the muon shield’s
configuration.

● The shielding effectiveness remains a topic of debate and
discussion among several research groups.

● The expected muon flux suppression is approximately 6
orders of magnitude, reducing the initial 10¹¹ muons per spill.

● The process of muons traversing the shielding is highly
stochastic.

SC-Muon Shield

5

● Proposal: Replace the first three magnets
of the shield with a single short
superconducting (SC) magnet (~5 T) to
maintain the same integrated magnetic
field strength.

● Optimization cycle (excluding FCN)
remained unchanged.

● The number of parameters was reduced to
29 (with the gap between the warm and
SC sections now treated as a parameter).

Loss Function

6

M - Muon Shield weight
M* - Constant
W

ℳ
 - Nonlinear function of the

x-coordinate for a muon in T1

The dedicated muon sample is used for MC:

● Generation stage weights have been removed.
● The sample size has been reduced to the minimum required for stable

results.

New Loss Function

7

Initial objective: the primary loss function was designed to
optimize muon flux through the tracking station.

Additional requirements introduced later:

Minimizing flux through the SND, a penalty term was
added to the base loss function to regulate SND-bound
muons.

Minimizing flux through the veto detector (surrounding the
decay volume):

A separate monitoring loss function was implemented (no
direct optimization).

Optimization was performed exclusively using the
augmented function from point 1.

F = W * (Tflux + SNDflux + 1)

W = a1 * Wsc + a2 * Wwarm

Tflux = a3 * max(0, (T - Tgood))

SNDflux = a4 * max(0, (S - Sgood))

aᵢ – tunable parameters, T(aᵢ) – muon flux through
tracking stations (equivalent to previous definition)

S(aᵢ) – Muon flux through SND (equivalent to
previous definition)
Tₙᵢₙ / Sₙᵢₙ – "Good enough" flux values

Bayesian optimization

8

Global Bayesian Optimization of a "Black
Box" System delivers excellent results when
the following conditions are met:

● Low dimensionality (<10 parameters)
● Continuous loss function (smooth

behavior)
● Simple parameter space topology (no

extreme nonlinearities or
discontinuities)

● No gradient information available for
the loss function

And if we consider non-gaussian prior?

9

Our algorithm (WU-GO) is fundamentally an LCB
(Lower Confidence Bound) approach, but with a
custom uncertainty estimator replacing the
predictive posterior variance.

Key Features:

● Balances exploitation-exploration within
the LCB framework.

● Accounts for response stochasticity, similar
to EGO (Efficient Global Optimization).

https://github.com/hse-cs/waggon

And if we want to achieve a local minimum?

10

Challenges in High-Dimensional Optimization - Curse of
dimensionality: global minima become exponentially harder
to locate as parameter space grows.

Gradient descent is effective for local optimization but fails
due to pathological curvature (e.g., ravines, saddle points) in
the objective function and inability to backpropagate
gradients through MC simulations (black-box stochasticity).

Proposed Solution - after known high-quality initial guess
near the global minimum is found:

Train a generative surrogate model (e.g., neural network) to
approximate simulation outputs.

Use the surrogate to enable gradient-based refinement from
the initial point.

https://arxiv.org/abs/2002.04632

Computing setup

11

The research was supported by Yandex.Cloud, really - my deep personal thanks!

● 54 Nodes
● ~ 58 GB RAM per Node
● ~ 30 CPU per Node
● Not that much storage
● No any orchestration provided

3 different control approach was used during several years of the experiments:

● Wonderland (failed to find any actual information now)
● Disneyland:

○ Go language based docker orchestrator
○ https://github.com/skygrid/disneyland/
○ MC results was uploaded to Cern EOS for the further processing

● Kubernetes:
○ actual setup
○ S3 Yandex Blob storage as an output for the further processing

https://github.com/skygrid/disneyland/

Simulation task

12

To calculate a single point for the optimization we need:

● Generate new Shield parameters and pass them to the control Node
● Wait for resources to be free, and run #NTasks to calculate the total #NEvents from the MC

sample(NEvents/NTasks per task)
● Wait all the tasks are completed successfully, re-run task if anything failed (if the number of re-runs is not too

much, mark as “failed” otherwise)
● Process outputs, calculate FCN and uncertainties, run additional set of tasks if the statistical uncertainty is not

satisfying
● Add new calculated point to surrogate and start a new iteration

The time to obtain a single iteration FCN value depends on:

● total events amount to simulate (k*NEvents, typical k value is 1 actually, more simulation only for good points).
● NTasks - the number of jobs to which the initial MC sample is splitted. More tasks - less events per task to

calculate, but there is some fixed time to start/process task, no need to split to. Also RAM is consumed by every
task and actually this is the bottleneck.

Simulation sample

13

The number of events in the initial sample critically determines the simulation runtime. There are 2 main samples:

● Full sample: 68GB of data, is stored locally on the every node, matches the one spill, is used to estimate the
detector performance characteristics

● Optimisation sample: 50MB of data, stored inside the docker image, sampled from the full one, big enough to
make the optimization results statistically stable in most cases

During the investigation on the statistical uncertainties in optimization

instabilities the problem of generation-step weight in the initial event

sample was found. The optimization sample was created with “weights

unrolling” approach, this allowed to reduce the size of the sample by

2 orders of magnitude while the initial number of events was kept.

This approach was added to the standard FairSHiP generator code as

an option.

RAM issues

14

The performance of the FairSHiP builds was controlled with Intel VTune software. Still the RAM amount on Node was

the main bottleneck in the configuration used to run MC. After one of the simulation software update the RAM

consumption was doubled. After short investigation the cause was found - migration from flat geant fields to the field

maps! The field maps were stored in the RAM as key-value pairs, where 3-dimensional coordinates were used as keys.

To reduce the RAM consumption 2 ideas was implemented asap:

● Keep only ¼ of field maps, use the detector symmetry to recalculate the other parts.

● Remove keys, keep just the field values in some organized order as an array, store step sizes and overall field

dimensions and center position - this allow to calculate array index from 3d-coordinate on-the-fly.

Optimization Stability issues

15

With
steps

Without
steps

Even with all hacks on previous
slides still the optimization result
stability could be improved with
synthetic field maps and some
geometry fluctuations.

Optimization results

16

Conclusions

17

● FairSHiP software stack is pretty complex and some additional efforts
was needed to make a convenient docker image updates possible

● Thousand of mc task should be run simultaneously to achieve the
acceptable speed of optimization process

● The MC software is profiled to provide the balanced load on resources
avaible

● The optimization pipeline works smooth and provided a good results
for several optimization tasks already

