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BM@N Experiment

BM@N (Baryonic Matter at Nuclotron) is the first stage é — A
experiment of mega-science project NICA
This is a fixed target experiment aimed to study dense TRACKING SYSTEM BM @N setu p ———  OTHER SYSTEMS
baryonic matter on heavy-ion collisions at the NICA
accelerator complex located at JINR in Dubna | .
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At this moment eight experimental RUNs were performed
since 2015:

RUN 1-2-3-4 (2015)
2015 Beam: deuteron
Target: C, Cu

-

RUN 5 (2016)
2015 Beam: deuteron

Target: CH2, C, Cu, Pb

RUN 6 (2017)

2017 Beam: deuteron, C
BM@N Target: CH2, C, Al, Cu, Pb
EXPERIMENTAL

RUNS RUN 7 (2018)

2[]18 Beam: Ar, Kr

Target: C, Cu

RUN 8 (2023-2024)
2023 Beam: Ar, Xe

Target: Csl

RUN 9 (2025)
Beam: Xe
Target: Csl

2025
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Magnet SP-41 (0)
Vacuum Beam Pipe (1)
BC1, VC, BC2 (2-4)
SiBT, SiProf (5, 6)

BD (7)

VSP, FSD, GEM (8, 9, 10)
FD (11)

4 x CSC 1x1 m(12)
TOF 400 (13)

2 x CSC 2x15 m’ (14)
TOF 700 (15)

Scwall (16)

Small GEM (17)

Beam Profilometer (18)
FQH (19)

FHCal (20)

HGN (21)




Hybrid Tracking System: GEM Detector

Hybrid Tracking System

Gas Elect ultipliers (GEM

The hybrid tracking system of the BM@N experiment consists of the
different types of coordinate detectors to register trajectories of
charged particles

NG

AxS

Configuration of hybrid tracker for the RUN-9 y
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GEM (Gas Electron Multipliers)is a
microstrip coordinate detector of the inner
tracker. It consists of gaseous chambers
with electron multiplier system inside

163.2 cn |

45.0 cm |

The configuration of this detector for
RUN-9 comprises seven stations
located inside the magnet along the
beam axis

39.0 cn

86.1 cn

163.2 e

Gas volume thickness: 9 mm
strip pitch: 800 pym
stereo angle between strips: 15°

Each station is assembled by two
chambers: upper and lower which are
joined together to form a plane
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Hybrid Tracker Composition

SiBT (Silicon Beam Tracker)

(3 planes of 63x63 mm) It includes detectors
located inside the

vacuum pipe in front

SiProf (Silicon Beam Profilometer)
of magnet SP-41

Triple GEM Chamber

Readout plane of GEM
chamber assembled by two
strip layers (straight and

(2 planes of 63x63 mm)
BEAM TRACKER inclined strips)
It comprises It consists of . . s pe .
coordinate detectors detectors located straight strips inclined strips
located inside the — behind the 7
magnet . . magnet /
Hybrid Tracking oge +
INNER TRACKER S —— OUTER TRACKER e
drift gap - =
ystem | %
B transfer gap

VSP [\;‘ertex Silicon P:ane based on STS) small CSC (Cathode Strip Chambers) i

[fone plane of 6 modules) (4 planes of Ix m) ransfer gap

FSD (Forward Silicon Detector) !

(8 half planes) large CSC (Cathode Srtrip Chambers) inguctonoer|

(2 planes of 2x1.5 m)
GEM (Gas Electron Multipliers)
14 half planes
\ [ rarpanes J y,




Signal Formation in Triple GEM Chamber

Operation Principles of GEM

\ particle track
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Stages of signal formation in a GEM chamber:

Gas ionization

A particle passes through the detector and ionizes gas
molecules, producing electron-ion pairs. Positive ions and
electrons drift to the cathode and to the anode,
respectively.

Electron multiplication

Primary electrons, passing through amplifying GEM
cascades, gain their kinetic energy and enable secondary
ionization. As a result of it is a lot of secondary electrons
(electron avalanches). Amplification is about 10% - 105.

Charge collection

Being collected on the anode, electrons form clusters on
each strip layer.

GEM foil with
microscopic holes

GEM cell

Assembling of GEM cells
(with GMSH)

Calculation of electric field map of
GEM (with ELMER)

J

Detailed Simulation of GEM with Garfield++

A E - electric field

B - magnetic field

Example of electron avalanche production
in GEM chamber (Garfield++)

Cluster of electrons collected by the
readout plane (before they are distributed
on strips)
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Dependence of mean electron shift on magnetic field
Dependence of mean electron diffusion on drift path
Distribution of mean free path for particles
Distribution of electron multiplication in gem-holes
etc




Approaches to GEM Simulation

Simulation Procedure Methods of Realistic Simulation of GEM

Full simulation consists of two
stages:

Monte-Carlo
Simulation
; points which

| MC points W<— charged particles

1. Monte-Carlo simulation : passed through
2. Realistic simulation Realistic
Simulation
( Digits | ¢— Signalson
\. ‘7‘ the strips )
Stage 1: Monte-Carlo simulation

Event
Generation Simulation of
Data track propagation

through matter

MC Simulation |—{MC Points]

Monte-Carlo simulation is
used for simulation of
charged particle passage [Deteclor
through matter. In order to \Seomety

Very slow: hours
to generate a
single cluster

GARFIELD++

simulation

Used to calculate
dependencies and
distributions
required for
standard algorithm

Currently used for
GEM-simulation
in BMNROOT

Standard

simulation

Used to prepare
dataset for GAN
training

New approach to
simulation of
clusters

GAN-based

simulation

Replaces the steps
[2-4] of the
standard algorithm
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do this Geant4 transport 1
. . Detector Transport Engine
engineis used Parameters (Geantd)
det. 1 det. 2 det. 3

Result: A set of MC
points which charged
particles left in

® Monte-Carlo point:
= spatial coordinates
= momentum

detectors : E:;E:Eglz‘l;s;)s.e
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Stage 2: Realistic simulation
Realistic simulation is detomer eapomses

used to create signals on ]
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signal: strip cluster

1. Information extracted from a MC-point is
used to initialize inputs parameters

2.Reconstruction of a particle trajectory in
the chamber (line from the entry point to
the exit point of the particle)

3.Calculation of points along the track based
on the ionization characteristics from
Garfield++

4, Multiplication of electrons and calculation of
their positions on the readout plane based
on the distributions and dependencies from
Garfield++

5.Result: clusters on the strips

Standard Realistic Simulation Algorithm
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Generative Networks for Cluster Generation

GAN (Generative Adversarial Network) consists of two neural
networks — generator and discriminator. The generator is used to create
new data samples, the discriminator is used to distinguish between real

samples and generated ones

J

Goal: Improvement of the model
Q Both the generator and discriminator are used

O The generator tries to fool the discriminator, while the discriminator
tries to distinguish real from fake data

Q Forward propagation: input flows through the network to produce
output (getting prediction)

O Back propagation: gradients are computed and weights are updated
for both the networks

back propagation

fake

ol

e
forward propagation

Inference mode

Goal: Generation of new realistic samples

Q Only generator is used
Q Forward propagation only is used to create samples

random clusters

o K | e

GAN is not allows to generate clusters with predefined parameters!

DISCR

GAN Modes

Training mode

Conditional GAN

C-GAN (Conditional Generative Adversarial Network) is an extension of a
standard GAN, where both the generator and discriminator are
conditioned on additional information (features) for controlled data
generation

back propagation

features

forward propagation

To simulate realistic responses from GEM chambers, only the generator
network (trained on prepared samples) is used

variability clusters

g &7 | &

00101 00101 00101

features

00101

the same features

By feeding the network with desired features, the corresponding clusters
can be obtained

C-GAN allows us to control the generation of clusters based on
MC information




Dataset Preparation

Training Samples

One training sample represents a cluster as a 2D tensor
(matrix) of size 64x64. The form of a 2D tensor defines the

generator output 1. Components of the particle's momentum px, py, pz (from a MC point)
2cm

o PpX, py, pz are normalized to the range [-1, +1] under the condition:
2cm l—

. R = /px2 + py? + pz? 0 = arccos bz = arctan by
area size binning matrix PNG picture =P py pz7, - R/’ ¢ = X
2x2 cm 64x64 cells 64X64 64x64 pixels

Input Parameters

R = \/px2+py2+pzz=1

=) L =) | o PX, pY, pz can be transformed into a spherical coordinate system
for better interpretability

Steps of sample preparation:

2. Electron drift direction Eqg (forward or backward)

o Eg. 1S @ binary parameter that can be either O or 1, depending on
o The area should include clusters from tracks with an angle of tr;]e GEM chamber orientation. It influences the resulting cluster
inclination to the beam axis from 0 to 50 degrees shape

1. Choosing the size of the description area for a cluster (2x2 cm)

53° 42° 34° 28° 28° 24° 18° b

12000}

10000

a0o

R « all tracks e N
\ e primary tracks | w
Bl AR ’
', ¢ secondary tracks IO O S ™
ot
l\R, forward
T,

6000

s000;

2000

backward
o OO DO B .- = =S SR N | orientation orientation
Acceptance angle for each station Distribution of angles of tracks in
in GEM (RUN-9) GEM (RUN-9)

3. Random noise vector noise_vec (64 dimensions) used to introduce
2. Binning the description area into 64x64 cells variability in the generation process

o The size of a binis 2/64 = 0.03125 cm

bin_size _
o CellRMS = el 0.009 cm (90 pm)
3. Converting the 64x64 matrix into a PNG image, where each cell f° w W
value is encoded as a 24-bit (into 3 RGB channels) g ’ ]
o The size of one uncompressed PNG file is about 700 B Example of three clusters with the same px, py, pz, and
o The size of one uncompressed TXT file is about 12 KB

Eqnre Values, but different random noise vectors

Result: training dataset of 800 000 samples was prepared
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Conditional GAN Architecture

Generator Network

INPUT: features (4) + noise (64)
Dense layer (4096)

Batch normalization

Activation: LeakyRelu deconv deconv deconv deconv
Reshape layer (4x4x256) reshape 4x4 4x4 4x4 4x4
Conv2DTranspose layer (256, 4x4) features+noise

T i M »ofl(* oo o[ |5 oo
Conv2DTranspose layer (128, 4x4)

Batch normalization 4+64
Activation: LeakyRelu dense 16x16
Conv2DTranspose layer (64, 4x4) 4096 32x32

Batch normalization 64 32 64x64

Activation: LeakyRelu 1
Conv2DTranspose layer (32, 4x4)

Batch normalization # batch normalization
Activation: LeakyRelu 9 leaky ReLu
Conv2DTranspose layer (1, 4x4)

OUTPUT: Activation: tanh [-1, +1] © tanh activation

J
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Discriminator Network

INPUT: features (4) +image (64x64x1)
Concatenate layer (64x64x5)

Conv2D layer (32, 4x4)

Activation: LeakyRelu

Conv2D layer (64, 4x4) features
Activation: LeakyRelu

Conv2Dlayer (128, 4x4) ¥+
Activation: LeakyRelu 4
Conv2D layer (256, 4x4)

Activation: LeakyRelu

Flatten layer (4096)

OUTPUT: Activation: sigmoid [0, +1] 54’1‘54 54’5‘54 32

flatten
P72 ) output

4096 dense
1

#» leaky ReLu

g sigmoid activation

J
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Conditional GAN Training

Generated Sample Evolution

parameters —» 0 @ Eyn
Framework: Tensorflow with Keras API (Python) [209. 85911 [348. 1034001
Optimizer: ADAM (Adaptive Moment Estimation)
epochs: 5
o a=0.0002, B,=0.5 B,=0.999
Loss function: binary cross-entropy
1 N
Loss = - [Verue 108(Vprea) + (1 = Yerue)108(1 — Vprea)] [18.7,'-22.4,0.0] [8.4',"-73.3",0.0]
i=1 ;T'"Z? _‘ _."_Z -] R
Training dataset size: 800 000 samples fria [E
) ) epochs: 10 = ﬂ . !
Number of epochs: 600 (150 is optimal) - -
'
\_ J
Training Loss Curves ['11.6', -47.0", 0.0] ['47.0","110.8', 0.0] ['23.9",56.8", 1.0] ['18.8",'69.7", 0.0]
e
“S —— Discriminative loss epochs: 50 - Y \ 'S d
e ——— Generative loss
175
1.50 ['10.6', '-94.8', 1.0] ['30.1', '67.0", 1.0] ['34.7', '28.5", 0.0] ['29.8', -147.0', 1.0]
§ - 150 e!)ochs P
| 1 +
. epochs: 150 O & F
0.75 T
real sample ['36.5', -114.9', 1.0] ['36.5',-114.9', 1.0] ['36.5', -114.9', 1.0]
0.25 1
0 100 200 300 400 500 600 trained
Epoch generator
Training loss curves: discriminative and output ‘ # ‘ J
generative loss




Generative Model: Integration

Data Processing in BMNROOT

Simulation Section Reconstruction Section

N Smearing
M of Coordinates

Framework BMNROOT was developed Detector Event
for software support of the BM@N ‘ Geometry ‘ ‘ Gen;;:l;ﬂon

experiment. It provides powerful tools
for simulation, reconstruction and
data analysis

MC Simulation MC Points

Realistic Effects

Simulation
Detector
Goal: Replace the standard model of Parameters

the realistic effects simulation with

s Coordinate .
the generative model Digitization Reconstruction Hits
Experimental .
\_
Integration of Modelinto BMNROOT

Steps: m @

1. Training C-GAN on samples using . Pvth ) : N
Tensorflow framework (Python) ython C++

2. Exporting the model to “keras” G .

format % e -

orme samples | > C-GAN \ > model.keras K eI C BMNROOT
3. Using f-deep library to integrate frugally-deep

the model into a C++ application training ) export integration L
(BMNROOT)

-




Generative Model: Evaluation (strip clusters)

. e A\
Comparison of Two Methods
Goal of the evaluation: to compare the generative model Residuals of mean position of cluster and position of MC point for
and .standard model generative and standard models (in strip units)
gmeratve 111] [T standard 1™ : ——— 40000~ T
30000} Mean  0.004302 E Mean  0.0005731
| \ | \ \ \ I\ \ \ \ [ Std Dev 1.073 350001 StdDev 09682
7 - 25000 | 30000/
.................... ol oo zom-_ . A =0.1strip zsoonf—
- zuonof—
15000f— | . | -
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100007 supey_075% wﬂﬁ generative standard e
100“05—
8000;
w00 : Distribution of cluster signals for generative and
ao00 ]~ ! standard models
20002— E
r I Entries 557669 L Entrles 557669
Qi i 10000— Mean 3.968e404 10000} Mean 3.74e+04
489 488 2 ~491 490 489 488 487 486 485 484 48 - L S D ]
generated cluster on cluster on straight I StdDev. 27226104 piDer. ESes
straight strips strips 8000~ 8000
10000 7 7 Bra—] F Fres 8] I
E Mean  -6028 10000~ Mean 6032 6000+— 6000
Std Dev  0.6885 F Std Dev  0.6153
sooor 8000+ I !
[ 4000+ 4000
5"0": 5000: I
i 2000 . | 2000
4000F 4000 r !
3
[ i a P R R AR R B Y 0 el b L L Ly b
2000] 2000/ -t 0 20 40 60 80 100 signa}szu 20 40 60 80 1 signalso
— generative standard
gu7 606 605 -804 603 602 —601 goe -608 -607 -606 ~605 604 603 —602 -801
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Residuals for tracks 0-50 degrees

Generative Model: Evaluation (reconstructed coordinates)

Residuals for tracks 0-20 degrees

X-residuals of MC point and reconstructed point (cm) X-residuals of MC point and reconstructed point (cm)
E Entries 450233 F Entries 450233 22000 ; ;:l::s " 0‘03;‘3010: [ Entries 133314
45000 Mean  2.583e-05 50000k Mean  8.669e-05 200001 SkDev 002783 25000~ Mean  -2.794e-05
E Std Dev 0.0558 Std Dev  0.05385 F Std Dev 0.02727
40000 18000 | C
350007 ‘ stddev: 558 um| 4000/ ‘ ’ std dev: 538 pm 16000 | std dev:276 um 20000~ std dev: 273 pm
30000} ]‘ A =20 pm r 140001~ ‘ A=3um r
250001 30000 12000/ 15000/
E L 10000/
20000/ r E C
E 20000/ 0001~ 10000/~
15090;— 6000— L
10000 10000 4000 5000/
50001 E 20001 _
E AR PSPV PSP PUVURN S 1 O PSP PO PO PO N
S I I S R B N I P B PR PP OO IO 7 O PO PO PO O o P I PR OO P 1 I W TP I I T
91" 08 06 04 02 0 02 04 06 08 o 09 08 06 04 02 0 02 04 06 08 o) 08 06 -04-02 0 02 04 06 08 cm1 o3 4)“3 4:‘-.5 -0.4 0.2 r|) 02 04 o.‘s o.‘a 1
cm
generative standard generative standard
Y-residuals of MC point and reconstructed point (cm) Y-residuals of MC point and reconstructed point (cm)
L Entries 450233 50000— i~ Entries 450233 r i Entries 133314 N Entries 133314
L Mean  0.0002392 r Mean  9.579e-05 16000 Mean  0.0001232 25000 | Mean  -7.332e-06
sooonf | SWDev 00875 C StdDev  0.08075 14000i StdDev  0.03078 [ StdDev  0.02826
c 40000/ F i r
25000 ‘ std dev: 875 pm r std dev: 807 ym 12000k | std dev:308 um 20000/~ ’ std dev: 283 pm
o000]- | a=68um 0000 oo || a=25um |
F r r 15000
15000/ i 8000~
. 20000— 8000 : 10000 -
10000/ r
" r 40000 e
F 10000/ N : 5000/
5000; e
ST DU U OV PO FRTR) W IR I PR DUZ U D SO PR P :‘..\‘..\‘..\m\.‘i‘.\‘.m..m..m..‘ I SR A AR SO TN B W AP A A
0—1 -08 -06 04 02 0 02 04 06 08 1 qﬂ -08 06 04 02 0 02 04 06 08 1 0—1 -08 06 04 02 0 02 04 068 08 1 q‘ -08 06 04 -02 0 02 04 06 08 1
om cm om cm
generative standard generative standard




Generative Model: Inference Performance

Generation Time per Sample

Standard Algorithm (C++) 7.2ms

GAN f-deep (CPU cores 10) (C++) 0.525 ms

GAN tensorflow (CPU cores 10) (Python) 0.718 ms

GAN tensorflow (GPU, batch = 100) (Python) 0.639 ms

GAN tensorflow (GPU, batch = 200) (Python) 0.343 ms

GAN tensorflow (GPU, batch = 300) (Python) 0.251 ms

GAN tensorflow (GPU, batch = 1000) (Python) 0.1 ms

GAN tensorflow (GPU, batch = 10000) (Python) . 0.057 ms
o Using the generative model in multi-core mode
requires some changes to event processing

o One event has about 200-300 Monte-Carlo pointsin
the GEM detector (defines the maximum batch size)

\. J

13/15




4 N\
What has been done:

O Generative model based on a Conditional GAN was

developed for realistic response simulation in the GEM
detector

What is planned next:

O Include magnetic field effects in the cluster generation
model

O Implement multicore processing support to improve
performance

O Other improvements and model optimization




Thank you for your attention ...



