

Joint Institute for Nuclear Research

NICA

Meshcheryakov Laboratory of Information Technologies (MLIT)

GAN-based simulation of microstrip triple GEM detector in the BM@N experiment

Baranov Dmitry

BM@N Experiment

Hybrid Tracking System: GEM Detector

Signal Formation in Triple GEM Chamber

Stages of signal formation in a GEM chamber:

Gas ionization

A particle passes through the detector and ionizes gas molecules, producing electron-ion pairs. Positive ions and electrons drift to the cathode and to the anode, respectively.

Electron multiplication

Primary electrons, passing through amplifying GEM cascades, gain their kinetic energy and enable secondary ionization. As a result of it is a lot of secondary electrons (electron avalanches). Amplification is about $10^4 - 10^5$.

Charge collection

Being collected on the anode, electrons form clusters on each strip layer.

Detailed Description of GEM

Detailed Simulation of GEM with Garfield++

Example of electron avalanche production in GEM chamber (Garfield++)

Cluster of electrons collected by the readout plane (before they are distributed on strips)

- Dependence of mean electron shift on magnetic field
- Dependence of mean electron diffusion on drift path
- Distribution of mean free path for particles
- Distribution of electron multiplication in gem-holes
- 🛛 etc

Approaches to GEM Simulation

Generative Networks for Cluster Generation

GAN

GAN (Generative Adversarial Network) consists of two neural networks – generator and discriminator. The generator is used to create new data samples, the discriminator is used to distinguish between real samples and generated ones

GAN Modes

Training mode

Goal: Improvement of the model

- Both the generator and discriminator are used
- The generator tries to fool the discriminator, while the discriminator tries to distinguish real from fake data
- □ **Forward propagation**: input flows through the network to produce output (getting prediction)
- **Back propagation**: gradients are computed and weights are updated for both the networks

Inference mode

Goal: Generation of new realistic samples

- Only generator is used
- □ Forward propagation only is used to create samples

GAN is not allows to generate clusters with predefined parameters!

Conditional GAN

C-GAN (Conditional Generative Adversarial Network) is an extension of a standard GAN, where both the generator and discriminator are conditioned on additional information (features) for controlled data generation

To simulate realistic responses from GEM chambers, only the **generator** network (trained on prepared samples) is used

By feeding the network with desired **features**, the corresponding clusters can be obtained

C-GAN allows us to control the generation of clusters based on MC information

Dataset Preparation

Training Samples

Steps of sample preparation:

1. Choosing the size of the description area for a cluster (2x2 cm)

• The area should include clusters from tracks with an angle of inclination to the beam axis from 0 to 50 degrees

- 2. Binning the description area into 64×64 cells
 - \circ $\,$ The size of a bin is 2/64 = 0.03125 cm $\,$
 - Cell RMS = $\frac{bin_size}{\sqrt{12}} = 0.009 \ cm$ (90 µm)

3. Converting the 64×64 matrix into a PNG image, where each cell value is encoded as a 24-bit (into 3 RGB channels)

- \circ $\,$ The size of one uncompressed PNG file is about 700 B $\,$
- The size of one uncompressed TXT file is about 12 KB

Result: training dataset of 800 000 samples was prepared

Input Parameters

- 1. Components of the particle's momentum px, py, pz (from a MC point)
 - $\circ~$ px, py, pz are normalized to the range [-1, +1] under the condition:

$$\mathbf{R} = \sqrt{px^2 + py^2 + pz^2} = 1$$

 px, py, pz can be transformed into a spherical coordinate system for better interpretability

$$R = \sqrt{px^2 + py^2 + pz^2}, \qquad \theta = \arccos\left(\frac{pz}{R}\right), \qquad \varphi = \arctan\left(\frac{py}{px}\right)$$

- 2. Electron drift direction E_{drift} (forward or backward)
 - $\circ~~{\rm E}_{\rm drift}$ is a binary parameter that can be either 0 or 1, depending on the GEM chamber orientation. It influences the resulting cluster shape

orientation

backward

3. Random noise vector **noise_vec** (64 dimensions) used to introduce variability in the generation process

Example of three clusters with the same px, py, pz, and E_{drift} values, but different random noise vectors

Conditional GAN Architecture

Generator Network

- □ **INPUT**: features (4) + noise (64)
- Dense layer (4096)
- Batch normalization
- □ Activation: LeakyRelu
- □ Reshape layer (4x4x256)
- □ Conv2DTranspose layer (256, 4x4)
- Batch normalization
- Activation: LeakyRelu
- □ Conv2DTranspose layer (128, 4x4)
- □ Batch normalization
- □ Activation: LeakyRelu
- □ Conv2DTranspose layer (64, 4x4)
- Batch normalization
- □ Activation: LeakyRelu
- □ Conv2DTranspose layer (32, 4x4)
- □ Batch normalization
- Activation: LeakyRelu
- □ Conv2DTranspose layer (1, 4x4)
- □ OUTPUT: Activation: tanh [-1, +1]

sigmoid activation

Conditional GAN Training

Training Setup

Training loss curves: discriminative and generative loss

Generative Model: Integration

Data Processing in BMNROOT

Integration of Model into BMNROOT

Steps:

1. Training C-GAN on samples using Tensorflow framework (Python)

2. Exporting the model to "keras" format

3. Using **f-deep** library to integrate the model into a C++ application (BMNROOT)

Generative Model: Evaluation (strip clusters)

Generative Model: Evaluation (reconstructed coordinates)

X-residuals of MC point and reconstructed point (cm) Entries 133314 22000 Entries 450233 Entries 450233 133314 Entries Mean -0.0001001 45000 25000 8.669e-05 2.583e-05 Mean Mean 20000 Mean -2.794e-05 50000 0.02763 Std Dev Std Dev 0.0558 0.05385 Std Dev Std Dev 0.02727 40000 18000 std dev: 558 µm std dev: 538 µm 20000 std dev: 273 µm 16000 std dev: 276 µm 35000 40000 14000 Δ = 20 μm Δ = 3 μm 30000 12000 15000 30000 25000 10000 20000 8000 10000 20000 15000 6000 4000 10000 5000 10000 2000 5000 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 standard generative generative standard Y-residuals of MC point and reconstructed point (cm) Y-residuals of **MC point** and **reconstructed point** (cm)

16000

14000

Residuals for tracks 0-50 degrees

X-residuals of MC point and reconstructed point (cm)

Residuals for tracks 0-20 degrees

Generative Model: Inference Performance

- Using the generative model in multi-core mode requires some changes to event processing
- One event has about 200–300 Monte-Carlo points in the GEM detector (defines the maximum batch size)

What has been done:

Generative model based on a Conditional GAN was developed for realistic response simulation in the GEM detector

What is planned next:

- Include magnetic field effects in the cluster generation model
- Implement multicore processing support to improve performance
- □ Other improvements and model optimization

Thank you for your attention ...