Logistic regression method for particle identification in MPD experiment

Danila A. Starikov

Peoples' Friendship University of Russia, starikov_da@pfur.ru

GRID'2025, 7-11 July, Dubna

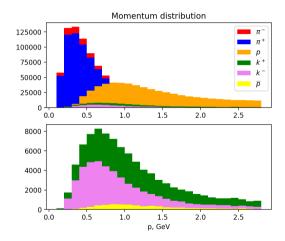
- Apply logistic regression method for particle identification problem
- Compare classification efficiency against XGBoost and N-sigma methods
- ▶ Investigate feature importance, using *l*₁-regularization
- > Train the models on dataset with fewer features and compare results

Model data

- Dataset acquired with MPDRoot package
- ► 6 particle types

778645					
851541					
91423					
46950					
594156					
6357					
2369072					

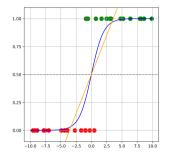
14 features: <u>p</u>, <u>charge</u>, dedx, m2, nHits, eta, dca, Vx, Vy, Vz, phi, theta, gPt, beta.



Binary logistic regression

Predicts the probability of a given data point corresponding to label 0 or 1:

$$\begin{split} \hat{y} &= \begin{cases} 0, \hat{p} < 0.5\\ 1, \hat{p} > 0.5 \end{cases} \\ \hat{p} &= \sigma \left(\mathbf{x}^T \boldsymbol{\theta} \right), \sigma(t) = \frac{1}{1 + \exp(-t)}, \end{split}$$



Loss function:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(-y_i \ln(\hat{p}(\mathbf{x}_i)) - (1-y_i) \ln(1-\hat{p}(\mathbf{x}_i)) \right) + \lambda R(\boldsymbol{\theta}),$$

где $R(\pmb{\theta})$ – regularization term, λ – regularization parameter

Multinomial logistic regression

► We use softmax regression:

$$\begin{split} \hat{y} &= \operatorname*{arg\,max}_{i} \hat{p}_{i}, \\ \hat{p}_{i} &= \frac{\exp(\mathbf{x}^{T} \boldsymbol{\theta}_{i})}{\sum_{j=1}^{K} \exp(\mathbf{x}^{T} \boldsymbol{\theta}_{j})}, i = 1, 2, ..., K \end{split}$$

- \blacktriangleright Each label has its own weights vector $\pmb{\theta}_i$, so the model is described by weights matrix $\pmb{\Theta}$
- Loss function:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{k=1}^{K} [y_i = k] \ln(\hat{p}_k(\mathbf{x}_i)) + \lambda R(\boldsymbol{\Theta})$$

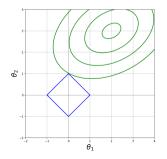
Regularization

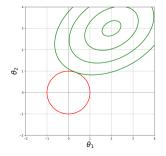
 \blacktriangleright l_1 -regularization

$$R(\boldsymbol{\theta}) = ||\boldsymbol{\theta}||_{1} = \sum_{i} |\theta_{i}|$$
$$R(\boldsymbol{\Theta}) = ||\boldsymbol{\Theta}||_{1,1} = \sum_{i} \sum_{j} |\theta_{ij}|$$

 \blacktriangleright l_2 -regularization

$$R(\boldsymbol{\theta}) = \frac{1}{2} ||\boldsymbol{\theta}||_2^2 = \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta}$$
$$R(\boldsymbol{\Theta}) = \frac{1}{2} ||\boldsymbol{\Theta}||_F^2 = \frac{1}{2} \sum_i \sum_j \theta_{ij}^2$$





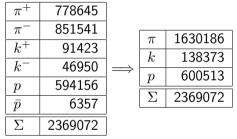
Evaluation of model classification results

$$\blacktriangleright E = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}} - \text{efficiency},$$

 $\blacktriangleright \ C = \frac{\text{False Positive}}{\text{True Positive} + \text{False Positive}} - \text{contamination},$

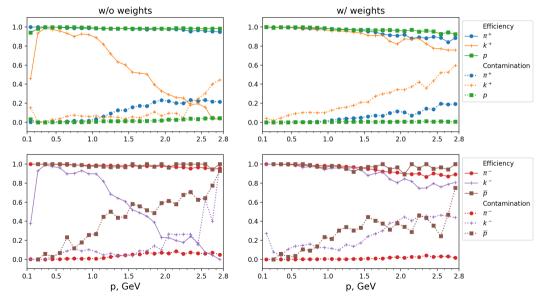
Data preprocessing

- \blacktriangleright All features scaled into range [0,1]
- Particles and antiparticles merged into bigger classes:

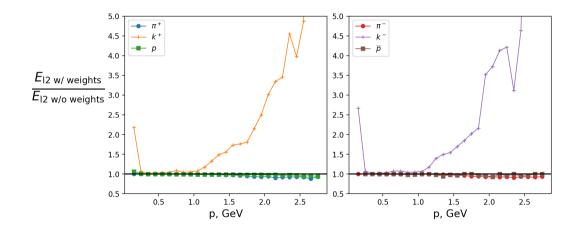


- Feature charge is excluded from training data, feature set is reduced from 14 to 13. Classification by charge is conducted separately
- Dataset is split into bins by 0.1 GeV (from 0.1 GeV to 2.8 GeV, 27 bins in total) and a separate model is trained in each bin

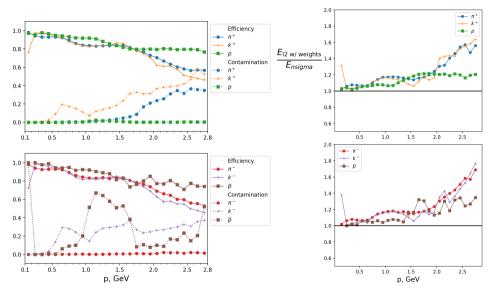
Results: l_2 -regularization



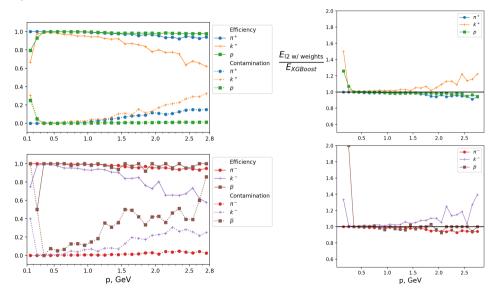
Results: l_2 -regularization



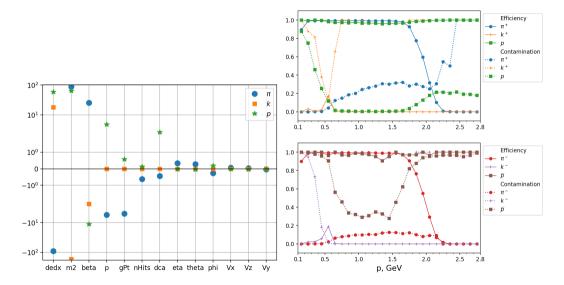
Comparison with N-sigma



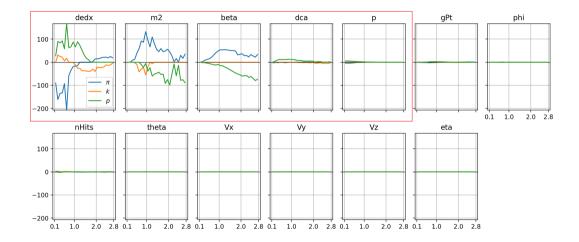
Comparison with XGBoost



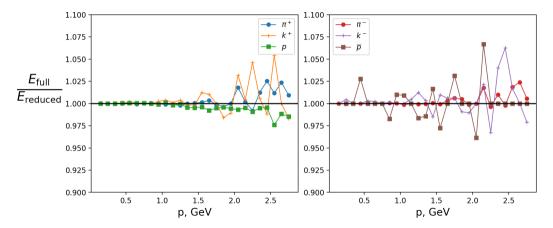
Feature importance investigation: integral case



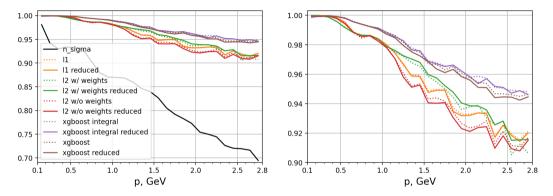
Feature importance investigation: bin-split case



Results on reduced data: l_2 -regularization



Comparison of total efficiency



	1	l2 w/ weights	l2 w/o weights	xgboost integral	xgboost	n-sigma
full	0.9822	0.9824	0.9804	0.9899	0.9893	0.8926
reduced	0.9821	0.9830	0.9798	0.9897	0.9888	0.0920

Conclusion

- For the first time the logistic regression method was used for the particle identification problem
- Logistic regression method compared against logistic regression method with the standard N-Sigma method of the MPDRoot package and the previously studied XGBoost model:
 - Works better than N-Sigma method
 - But loses to XGBoost model across all momentum range
- ► Feature importance analysis was conducted by introducing *l*₁-regularization:
 - Attributes **dedx**, **m2**, **beta** are significant over the entire range of moments
 - Feature weights Vx, Vy, Vz, nHits, eta, phi, theta were zeroed during model training
- Reducing dataset by dropping the least important features didn't impact models' prediction ability, as expected

Data processing, model training and results analysis were done on HybriLIT platform