High Performance Computing in Radiation Biology

Aleksandr Bugay Laboratory of Radiation Biology, JINR

JINR Life Science Program: Basic and Applied Research

Research Infrastructure for Irradiation of Biological Samples

new MSC230 medical cyclotron protons 230 MeV

U-400M cyclotron

Radiopharmaceuticals

1

Laboratory of Radiation Biology

- 1. Establishment of integrative interrelations of **radiationinduced effects at different levels** of biological organization:
- 2. Identification of the mechanisms of the **radiations effects on brain** and the development of neurodegenerative diseases.
- 3. Assessment of **radiation risks** for various scenarios of manned space flights and mixed radiation fields of nuclear physics facilities.
- 4. Development of new methods to improve the effectiveness of radiation and radionuclide therapy of cancer.
- 5. Development of **new mathematical models** and computational approaches for radiobiology, bioinformatics, and radiation medicine.
- 6. Identification of mechanisms and pathways of **catalytic synthesis of prebiotic compounds** under the action of radiation.
- 7. Development of **new research protocols**, including omics technologies, bio-imaging, automated processing of biological data.

Molecular Radiobiology

Radiation Genetics

Radiation Cytogenetics

Clinical Radiobiology

Mathematical

Radiation Physiology

Radiation Protection

Astrobiology

Radiation

Neuroscience

http://lrb.jinr.ru

Hierarchy in modeling the response to radiation

Energy deposition

Excitation/ionization Initial particle tracks

Radical formation Diffusion, chemical reactions Initial DNA damage

DNA breaks / base damage

Repair processes Damage fixation

Cell killing

Monte Carlo simulations

Molecular dynamics

AMBER

Nonlinear dynamical systems

Wolfram Mathematica MATLAB

PDE, neural networks, cellular automata ...

Estimating final effect

Radiation neuroscience: Brain neural networks

Clinical radiobiology: Complex models of tumor growth

A success of modern computations: From simple to very detailed models

Dose deposition

Biological effect e.g. probability of cell survival

$$S = \exp(-\alpha D - \beta D^2)$$

Calculation of elementary events at the cellular and molecular level

- **1. Calculation of DNA damage formation**
- 2. Models of DNA DSB repair and misrepair

3. Cell survival

$$\begin{array}{c} \boldsymbol{\alpha} = ? \\ \boldsymbol{\beta} = ? \end{array}$$

1. Monte Carlo simulation of radiation-induced DNA damage

Methodology of simulation on example of Geant4-DNA

Physical events

Particle	Interaction	Model
e-	ionization ≥ 1МэВ 10 кэВ – 1 МэВ 10 эВ – 10 кэВ	(<i>Med. Phys. 2010</i>) Moller-Bhabha Born Emfietzoglou
	excitation 10 кэВ – 1 МэВ 8 эВ – 10 кэВ	(<i>Med. Phys. 2010</i>) Born Emfietzoglou
	elastic scattering 0.025 эB – 1 МэВ	(<i>Rad. Phys. 2009</i>) Champion
¹ H, ⁴ He, ⁷ Li, ⁹ Be, ¹¹ B, ¹² C, ¹⁴ N, ¹⁶ O, ²⁸ Si, ⁵⁶ Fe	ionization 1-1000 МэВ/нук	(<i>Rev. Phys. 1992)</i> Rudd
	Multiple scattering	<i>(J. Phys. 2010)</i> Urban

Double strand break probability

 $P_{DSB} = 1 - e^{-\varepsilon/\varepsilon_0};$

 ε – energy deposition in event

 $\varepsilon_0 = 8.22$ - average bond dissociation energy

Methodology of simulation on example of Geant4-DNA

Radiolysis

Process	reaction co	efficient, 10 ¹⁰ M ⁻¹ s ⁻¹
$\mathbf{e_{aq}^-} + \mathbf{e_{aq}^-} + 2\mathbf{H_2O} \rightarrow \mathbf{H_2}$	$2 + 2OH^{-}$	0.5
$\mathbf{e}_{aq}^- + \mathbf{H}^ullet + \mathbf{H}_2\mathbf{O} ightarrow \mathbf{H}_2$ -	$+ OH^{-}$	2.65
$e^{aq} + {}^\bullet OH \to OH^-$		2.95
$e^{aq} + H_3O^+ \rightarrow H^{ullet} + H$	2 0	2.11
$e^{aq} + H_2O_2 \rightarrow OH^- + \bullet$	ОН	1.41
${}^{\bullet}\mathbf{OH} + {}^{\bullet}\mathbf{OH} \to \mathbf{H}_2\mathbf{O}_2$		0.44
${}^{\bullet}\mathrm{OH} + \mathrm{H}^{\bullet} \to \mathrm{H}_{2}\mathrm{O}$		1.44
$\mathbf{H}^{\bullet} + \mathbf{H}^{\bullet} \to \mathbf{H}_2$		1.2
$H_3O^+ + OH^- \rightarrow 2H_2O$		14.3

Indirect damage, main reaction channel $P_{DSB} = 0.65$

 $\mathsf{DNA} + \mathsf{'OH} \to \textbf{(DNA)'}$

Oxygen-dependent reaction channel1 (DNA)' + $[O_2] \rightarrow (DNA)OO'$

Reaction A+B occurs if $R_{AB} \leq R_e$

where
$$R_e = \frac{k}{4\pi N_A (D_A + D_B)}$$
 or $R_e = R_c / (e^{R_c / R_{AB}} - 1)$

Methodology of simulation on example of Geant4-DNA

Geometry of sensitive target

nucleoside

DNA in chromatin

Chromosome domains

Counting DNA lesions

Base damage (BD)

Single stand break (SSB)

Double strand break (DSB)

Complex and clustered damage (size < 10 bp)

Oxygen-Dependent Damage and Chromatin Structure

Comparison of measured and calculated oxygen enhancement ratio OER determined by double strand break (DSB) yields after γ -irradiation

Effect of oxygen concentration and chromatin structure on amount of DNA double strand breaks induced by low- and high-LET radiations

DNA lesion distribution by type

- 1) DNA base damage (BD)
- 2) Single strand break (SSB)
- 3) Clustered SSB
- 4) Double strand breaks (DSB)
- 5) Clustered DSB
 - Experimental data
 - Frankenberg 1999
 - ★ Belli 2001
 - Belli 2006

Other simulation codes

.-**☆**--- Nikjoo 2001 .-**◇**--- Friedland 2011 .-**△**--- Rosales 2018

Complexity of clustered DNA damage

Complexity of clustered DNA damage

2. Principles of DNA repair modeling

1. Reaction scheme
$$X + R \xrightarrow[k_{+}]{k_{+}} Z \xrightarrow[k_{-}]{q} R$$

2. Differential Equations

$$\frac{dX}{dt} = -k_{+}XR + k_{-}Z$$
$$\frac{dR}{dt} = -k_{+}XR + k_{-}Z + qZ$$
$$\frac{dZ}{dt} = k_{+}XR - k_{-}Z - qZ$$

3. Initial conditions

$$X(0) = N_0$$
$$R(0) = R_0$$
$$Z(0) = 0$$

4. Determination of parameters k_+ k_- q

Time

Pathways of DNA double strand break repair

modified from Danforth et al(2022) Front. Cell Dev. Biol. 10:910440.

DNA repair modeling

DNA repair modeling: comparison of DSB and chromatin breaks

3. Cell survival modeling

Scheme of cell cycle

$$S = e^{-p_{i,p,m,a}N - N_{mis}}$$

N - number of DSBs remaining

 $N_{mis} \sim N_{chrom \ aber}$

- number of misrepaired DSBs

Transition from cell culture to tissue is there any workaround?

Predictive

power limited

by database!

Data-driven approach

Clinical / laboratory data

Model of A. Niemierko et al

Model-driven approach

Hierarchy of complex models

Input data rely on current scientific knowledge!

Simplification Requires verification!

Software or fit to simple formula

Tissue and organ effects of radiation

An example of direct modeling scheme

Radiation damage to the central nervous system:

Radiosensitive cells - neural stem cells

- 1. Amount of cells with lesions
- 2. Calculation of cell survival
- 3. Effect of neurogenesis impairment on brain electric activity

Geometry of rodent hippocampus for use in GEANT4-DNA

3D model of rat hippocampus traversed by 600 Mev/u ⁵⁶Fe ion track CA3 CA1 Fluorescent image of hippocampus slice HMC NSC, IMN **Neurogenesis region Sensitive to Radiation!** Scale 1:100 ~ 20 000 cells Precursor Immature neurons neurons Neural stem cells cells

Scalability – way to success

Electrophysiology scaling

DNA damage computation

Survival of radiosensitive cells

Calculated survival of radiosensitive cells (neural stem cells, neural progenitor cells, immature neurons) after action of 1000 MeV protons, 290 MeV/u carbon ions, 600 MeV/u iron ions as compared with experimental data [Rola 2004, 2005, Tseng 2014].

Biological neural network of hippocampus: a model for electrophysiological activity

Mathematical description of neural network elements

Neural network electric activity

Influence of immature cell loss on information processing

Future plans: 1) radiation-induced brain disorders

Future plans: 2) response of tumors to radiation

Summary

✓ Cell culture simulations

+ direct/indirect DNA lesions

- + repair/misrepair (kinetics, effect of inhibitors, mutations)
- + cell survival (e.g. computation of α , β values)

• Tissue effects

- **±** empiric models (lack of data for new protocols)
- **±** detailed models of tumor growth (semi-empiric, extremely high computation power)
- detailed models of normal tissue damage (strongly depends on tissue, hard to verify)

- Organism level

Translation from rodents to human

