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Analyzing the link between education and labor markets is a key
research priority, as technological changes and rising skill demands
require adapting educational programs.

A mismatch between graduate skills and economic needs leads to LABOR EDUCATION
labor shortages and unemployment [1-3]. MARKET SYSTEM
Understanding these mechanisms is crucial for developing ‘1%
effective education policies and workforce demand forecasting
tools.

Machine Learning Neural Networks

Recent years have seen widespread adoption of Al tools like
machine learning, NLP, semantic methods, ontologies

[4-13]. There's growing emphasis on developing integrated 7.' |
decision support systems and end-to-end data analytics %
platforms [6, 14-17]. HUNWSW"ATA ﬁNﬁAGEM
Natural Language PIRALEL =
Processing
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Papers [4-8] present the authors' work on the creation
and development of an analytical platform based on
Big Data solutions and technologies that implements
a complete data processing cycle - from collection
and storage to semantic analysis and services for
visualising results and making decisions in the field of
monitoring and analysing the labour market and
matching employers' staffing needs with the level of
training of specialists in the Russian Federation.

This work presents the results related to the
development of the methods proposed in [4-8].
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Task description

In papers [7-8], the proposed methodology was verified by comparative analysis of graphs reflecting the
connections between ‘Professional Competence’ and ‘Vacancy' using three embedding models of different
architectures (Word2Vec, FastText, BERT).

This work aims to investigate ways of aggregating such representations and to conduct a comparative
analysis of various methods for assessing their consistency and stability. The results obtained can be used to
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Input data. Labor market
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integrating semantic representations of texts

Search for aggregation methods

—— How to aggregate?

Comparative analysis and evaluation of the consistency of methods for



Data volume
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Evaluated aggregation methods

1. Averaging of similarities:
simwzy(vi, c]-) + simFT(vi, c]-) + simpgrr(Vi, ¢j)
3

2. Embeddings concatenation [19-21]:
emb,, = embyy(v;) U embpr(vy) U embpper(v;) | | | |1 ]

emb,, = embyy(c;) U embpr(c;) U embggpr(c;) ) e B e B Too ’

sim(emb,,, embc]_)

PCA: main components (similarities)

PCA: main components (similarities) — PC1

X

3. Similarities aggregation

USi ng PCA %96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80
4. Similarities aggregation o
using SVD ¥

0.86|
0.84]
0.82]
0.80+

Comparative analysis and evaluation of the consistency of methods for

11 July, 2025 integrating semantic representations of texts



Used methods for consistency evaluation

1) Elements of graph analysis
2) Boxplots [22]
3) Calculation of the coefficient of variation (CV) [23, 24]

4) Correlation matrices [19, 25]
5) Calculation of the Kendall's concordance coefficient [19, 21].
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Graph analysis

Word2Vec FastText BERT

Metrics Metrics Metrics

lodes | 74 840 Vodes | 68 133 Modes | 53 265
9% | 702 856 9% | 425 693 Faaes | 300 731
Average | 18,783 ;| Average | 12,496 Average | 11,202

threshold: P | o | 15851 ; e | 10,418
cosine similarity >= 0.8

Metrics
Modes | 43018

Metrics
fodes | 43018

Metrics
Modes | 53 165

Metrics
= 143018

Edges | 161406

num

° | 161 406 G| s | 999 455 fom | 161406

Average cosine Vectors SVD
similarity concatenation
. All models and aggregates detect large, stable clusters — the main ‘centres of demand’ — i.e. frequently occurring or closely

related competencies — are identified by all methods, despite architectural differences.

. Word2Vec forms the densest and most connected graph, indicating the model's tendency to associate more pairs as ‘similar.’

. FastText and BERT are more selective, especially BERT: it has fewer nodes and edges, indicating a more ‘sharp’ semantic
distinction.

. The similarities averaging, PCA, and SVD methods produce almost identical graphs, which indicates the consistency of
these methods.
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Boxplots
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The coefficient of variation (CV) — a relative measure of the spread of the date

Coefficient of variation (models) Coefficient of variation (aggregations)

3.0 2.95%

The higher the coefficient of
variation, the greater the spread of

3.31%

3.21%

the data relative to the mean. 30 1
2.5 1

25
0) 20

CV =|—|*100%
H 15

15 4
A low coefficient value indicates a
more homogeneous data set 10 1

104

05
05 4

0.0 —

G sim ooncat vec
0o - =

sim_word2vec sim_fasttext sim_bert

All coefficients of variation are close to zero, which indicates sufficient homogeneity of
the obtained proximity values (both for the base models and aggregations).

The lowest coefficient of variation is for the averaging method (Average similarity)
(2.38%), i.e. the aggregated results obtained by this method are the most homogeneous.

Comparative analysis and evaluation of the consistency of methods for

11 July, 2025 integrating semantic representations of texts



Correlation matrices

Pearson correlation matrix

AVG_sim

concat_vec 0.1425 0.2378 0.7

1.0
1.0000-0.9686 1.0000 | 0.8147 0.8436 0.8

0.8
-1.0000 0.3649

0.6

JOE 0.9686 NUSILER 1.0000 0.9705 | 0.8964 0.8897 =
-0.4

SVD -eele]e} 0.9705 1.0000 | 0.8197 0.8438 o3
- 0.2

Spearman correlation matrix

AVG_sim -

concat_vec -
PCA

SVD -

sim_fasttext -

sim_bert -

sim_word2vec -

AVG_sim 0.9654 1.0000 | 0.8075 0.8233

0.5429 Mol 0.3229 0.5365| 0.1205 0.2065

MW 0.9654 Qcppicl 1.0000 0.9675 | 0.8925 0.8687

1.0
0.5357 09
0.8
0.7

0.3150

concat_vec

SVD ool 0.5365 MeRslsyiammmoloJo]oN NoR:) ACRRIR:PAEN 0.5293

PCA
SvD

sim_bert -

E
0
=
<C

concat vec

sim fasttext -

sim word2vec -

Adaregation Word2Vec FastText BERT MEAN
ggreg (Pearson / (Pearson / (Pearson / (Pearson /
method
Spearman) Spearman) Spearman) Spearman)
Average 0.81/0.81 0.84/0.82 0.58/0.54 0.75/0.72
similarity
Embeddings 0.14/0.12 0.24/0.21 1.0/0.99 0.46/0.44
concatenation
PCA 0.90/0.89 0.89/0.87 0.36/0.32 0.72/0.69
SVD 0.82/0.81 0.84/0.82 0.57/0.53 0.75/0.72

Aggregation methods correlate very well with Word2Vec and

FastText

BERT shows low correlation with all aggregation methods

The almost complete match between the embedding concatenation
method and the BERT model suggests that BERT dominates the
concatenation vector,
Concatenating vectors without normalisation/weighting can result in
one model (BERT) completely dominating the representation.

probably due
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to scale or
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Kendall's concordance coefficient (7)

Kendall concordance coefficient )
Consistency graph (Kendall's t > 0.2)

AVG sim 0.9941 : ) .
- sim vec

concat_vec 1.0000 0.2183 0.3732 0.0802 0.1382 =0 N
%,
PCA 0.2183 1.0000 0.8450 0.7151 0.6827 —0: siw‘xt ~
S 0.63 ?‘,:,

SvD 1.0000 0.6180 . o

63 /o.ﬁ“ gf')"
%l él % E .El 0.84 ¢
g % .EI ) 0.2
% @ 92 o= 037

Method Kendall’st| | Method / Model | AVG_sim |Concat_vec| PCA | SVD
ez sun oot Word2Vec 0.6123  |0.0802 0.7151 |0.6180

FastText 0.6277 |0.1382 0.6827 |0.6277
PCA & SVD 0.8450

BERT 0.3726  |0.9935 0.2128 |0.3677
PCA&AVG 0.8399 MEAN|0.5375  |0.4040 0.5369 |0.5378
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 Across all examined characteristics, the method based on concatenating the
embeddings from the three models followed by computing semantic similarity
between the resulting vectors (concat_vec) stands out. The low correlation of this
method with the baseline models Word2Vec and FastText, combined with an
excessively high correlation with BERT, suggests a bias in favor of BERT. This
effect is likely due to the significantly larger dimensionality of BERT's embeddings
(1024 vs. 300 for Word2Vec and FastText).

« The most similar results are produced by methods that average the similarity
scores obtained from the baseline models Word2Vec, FastText, and BERT—
specifically, the calculation of the average similarity (AVG_sim), as well as the
aggregation of similarity values using PCA and SVD.

* All coefficients of variation (CV) are close to zero, indicating a sufficient degree of
homogeneity in the obtained similarity values — both for the baseline models and
the aggregation methods. The lowest CV is observed for the AVG_sim method
(2.38%), suggesting that the aggregated results produced by this approach
are the most consistent.

« A comparison of the Pearson and Spearman correlation matrices also reveals that
the AVG_sim method demonstrates the highest average similarity to the

Metrics
Nodes | 43018

num

Edges | 161 406

% | num

Average 7 504

degree

Weighted
baseline models, with correlation coefficients of 0.7454 (Pearson) and 0.7222 asleg,agee 6 350
(Spearman), respectlvely degree ’

« The highest average Kendall’s concordance coefficients with the baseline
models are observed for the AVG_sim and SVD methods (0.5375 and 0.5378,
respectively), indicating that in more than half of the cases, the expert-like ranking of
"Vacancy—Competence" pairs produced by these aggregation methods aligns with
that of the individual baseline models.

- The final aggregation strategy for combining similarity estimates from the Average cosine

selected embedding models should be based on the average similarity

method (AVG_sim), as it demonstrates the lowest coefficient of variation and . - -
the highest correlation with the baseline models — thus most closely S|m||ar|ty
approximating their "consensus judgment.”
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Conclusion

This study investigates various methods for integrating the outputs generated by multiple
embedding models, aiming to combine their individual strengths into a unified representation. In
addition to exploring integration techniques, the research focuses on evaluating the consistency
of the resulting aggregated embeddings both internally — by comparing different aggregation
methods — and externally — by benchmarking against the baseline embedding models used
independently.

Through analysis, the method based on averaging similarity scores across models was
identified as the most effective aggregation strategy. This approach demonstrated superior
stability, coherence, and alignment with the baseline models' semantic assessments, thereby
providing a reliable consensus representation.

The insights and results obtained from this work have practical implications for enhancing
the performance and robustness of semantic similarity models applied to textual data. In
particular, the use of embedding ensembles can lead to more accurate and stable semantic
comparisons, facilitating applications such as information retrieval, natural language understanding,
and text classification.
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Future plans

In future research, the following directions are envisaged:

* The methodological toolkit for embedding aggregation is planned to be
expanded through the incorporation of trainable approaches,
particularly mechanisms based on attention architectures (attention-
based fusion).

* An empirical evaluation of the effectiveness of the resulting aggregated
representations is intended to be conducted across applied
downstream tasks, including classification, semantic search, clustering,
and topic modeling.
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pd.DataFrame(df.iloc[@, :])

address
date_posted
experience
platform
profArea

region

requirements

0

HuxHWiA HoBropoa, MockoBckoe Lwocce, 3TA
2022-01-17T14:40:57+0300

OT1 1 roga ao 3 net

hh

MIHGOpMaLKNOHHbIE TEXHONOTMK, MHTEPHET, TeNeKOM
Hwkeropoackas obnacts

OnbIT o7 1 roaa. NonHaa 3aHATOCTb, NOAHBIA AeHb (3/11 No pe3yabTatamM cobecefioBaHWA).
================================ YCKOPb KapbepHbIi 1 NPoPeccnoHanbHbI
pocT! ¥ Hac MHOrO COBpPEeMEHHEIX 1 MepCneKkTUBHBIX B13HeC-HanpaBneHuii - paboTa ¢
undposbiMu cuctemamin (ETAVC u ap.), aBTOMaTM3aLMA TOPTOBAW, 3alimMTa MHGopMauunK,
a/bTepHaTWBHAaA 3HepreTuka (CONMHeYHbIe 3N1eKTPOCTaHUMK 1 He TObKO). &quot;LaK8quot;
CTabunibHO...

: - Co3aaTh CaWT C HY/NA Ha MONYAAPHOM ABWXKKe, &qUOt;HaTAHYTb AM3aliH&qUOt;, KpacnBo u
afanTUBHO CBEPCTaTk ero; - BHECTU NPaBKM B UYXKOW KOZ 1 He CIoMaTb canT; - CBepcTath

Iresponsibilitiesl NEHAVHT C aHUMaUWeld, CTUNbHOe eMel-NMMCbMO; - XOpoLUo 3Haells HTML, PHP, CSS, Js u 1.4

schedule
specialization
title

conditions

(HeoBXOANMBIA BEB-UHCTPYMEHTapKiA). Ham BaXkeH TBOI CKW, a He rapBapackas CTeneHb v
CTaX B Mera-kopnopauusx. 3BoHM NpaMo ceivac! Mbl NpUraacum ...

MOAHLIA AeHb
Web mactep
web-nporpammuicT | html-Bepcransiimk

None

Comparative analysis and evaluation of the consistency of methods for

integrating semantic representations of texts



PCs of Dubna State University

Title of PC Indicators of PC achievements

13

CnocobeH npoeKTMpoBaTb U pa3pabaTbiBaTh MpoeKTUpyeT KOMMNOHEHTbI MHPOPMALMOHHBIX CUCTEM 3NEKTPOHHOTO
KOMMOHEHTbl KOPNOPATUBHbIX MHPOPMALMOHHbIX 6u3Heca; Pa3pabaTbiBaeT KOMMNOHEHTbI MHPOPMALMOHHbIX CUCTEM
CUCTEM U MHPOPMALMOHHBIX CUCTEM 3NEKTPOHHOTO

busHeca

CrnocobeH BbINOAHATb NPOEKTHYIO AeATeIbHOCTb Peannsyet npoeKTbl No pa3paboTke u moandpuKaumum MHPOPMaLMOHHbIX
no pa3paboTke u cosgaHuto (moandukaummn) UC, cuctem; PaspabaTbiBaeT TEXHUKO-3KOHOMMUYECKOE 0OOCHOBaHUE MPOEKTOB
pa3paboTKke TEXHMKO-3KOHOMMYECKOTO no ynyyweHuto busHec-npoueccos U UT-MHPpaCTPYKTypbl NpeanpusaTms

060CHOBaHMA NPOEKTOB ANA yAy4yweHna busHec-
npoueccoB 1 NT-nHPpacTpyKTypbl NpeanpuaTna

CnocobeH NpoeKTUpOBaThb M CO34aBaThb OcyLlecTBNseT NPOEKTUPOBaHNE N Pa3paboTKy NPOrpamMmmMHbIX MOAYeln 1
nporpammHoe obecneyeHne, COOTBETCTBYHOLLEE KOMMOHEHTOB, COOTBETCTBYHOLIUX TPeboBaHUAM 3aKa3umnKa, BKAOYaA
TpeboBaHMAM 3aKa3umnKa, BKAOYAA pa3paboTky pa3paboTKy NnporpammHoro nHtepodeica...

NPOrpPaMMHOro nHtepdenca...
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Vacancies
data

Preprocessing

Text

Educational
programs
data

Preprocessing

Text

preprocessed text

Preprocessing

1. Text preprocessing
o Split into sentences
o Tokenization
o Lemmatization
o Working with terminology
(deciphering abbreviations
such as IT, DB, etc.)
o Removing stop-words
o (optional) Tagging
2. (optional) Calculation of TF-IDF
word weights
3. (optional) Identifying the most
meaningful text from the three
levels of PC mastery ("Know",
"Can", "Possess") (for PC
PRUE) using the Principal
Component Analysis method

preprocessed text

Vectorization
(with
pretrained
model)

Vectorization
(with
pretrained
model)

Gistance threshold O

Calculation

ofa . L
. . Visualization
distance in
. of results
given
metrics

Distance metrics

1. Cosine distance

11 July, 2025

M2

M1

M2

Title: ruscorpora 1 300 10

Description: Word2vec Continuous Skipgram vectors
trained on full Russian National Corpus (about 250M
words). The model contains 185K words.

Related papers: https://www.academia.edu/24306935
Preprocessing: The corpus was lemmatized and tagged
with Universal PoS.

Parameters: vector size 300, window size 10

Title: araneum none fasttextskipgram 300 5 2018
Description: FastText Skipgram vectors trained on Russian
Web Corpus (about 1077 words). The model contains 10B
words.

Related papers: https://arxiv.org/pdf/1801.06407.pdf
Preprocessing: The corpus was lemmatized.

Parameters: vector size 300, window size 5

M3

Title: sbert large mt nlu ru

Description: BERT large model multitask (cased) for
Sentence Embeddings in Russian language used to solve
the problems of recognizing intent, named entity extraction,
sentiment analysis, analysis of toxicity and search for similar
queries.

Related papers:
https://habr.com/ru/companies/sherdevices/articles/560748/
Parameters: vector size 1024, 427M parameters
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