Reliable and Cost-Efficient Dataset Storage
for Distributed Machine Learning

—1/14

1. Why the classical approach is outdated

Traditional dataset storage for ML often relies on full replication across several storage nodes.
This leads to:

Massive disk overhead: triple replication adds +200% storage cost;
Failure sensitivity: a node or data-center outage can stall the pipeline for hours or days;

Trusted-operator model: you must blindly trust storage providers;

Poor fit for federated ML: regional copies multiply the cost.

—2/14

2. Why do we need a new method?

Key challenges in distributed ML training
Modern pipelines must simultaneously:
@ Save space: triple replication doubles your bill;
e Stay available: losing two or three nodes must not stop training;

o Be verifiable: storage integrity needs cryptographic guarantees, not blind faith.

Goal
Build a storage layer that simultaneously:
© Keeps overhead within 20-40%;
@ Survives node failures with zero data loss;
© Lets any client verify integrity without trusted parties.

(Plain: We want it cheap, reliable & transparent — all at once.)

—3/14

3. High-level architecture

Our approach combines four foundational building blocks working as one cohesive system:
e Erasure Coding — slashes storage cost while preserving durability;
o Leaderless Byzantine Consensus — manages shards without central authority;

e Zero-Knowledge Proofs (ZKP) — prove data are stored correctly without revealing
them;

@ On-Chain Anchor — makes metadata tamper-proof and publicly auditable.

Together they form a secure, scalable and verifiable pipeline, from encoding to model training.

(Plain: Goal: marry distributed-systems reliability with cryptographic transparency.)

—4/14

4. Component 1: Erasure Coding

Instead of three full copies we apply erasure coding — a more economical yet durable redundancy
scheme.

How it works
@ Split data into k data shards;
@ Add n—k parity shards via Reed—Solomon;

@ Any k of n shards reconstruct the original.

Benefits
@ Survives multiple node failures;
@ Overhead only +37% (example k=8, n=11) vs +200% replication;

o Parallel fetch accelerates training.

(Plain: Less traffic, less storage — same durability.)

—5/14

Part | — Problem Solution

5. Component 2: Leaderless Byzantine Consensus

Problem: which nodes store which shards, and what if some nodes misbehave?

Solution: an asynchronous BFT protocol with no single leader:
@ Every node votes — no single point of failure;
@ Tolerates up to |(n—1)/3] faulty or malicious nodes;

@ Cluster state and re-balancing are entirely decentralised.

(Plain: Leaderless consensus reliability without a centre.)

—6/14

6. Component 3: Zero-Knowledge Proofs of Storage

How to be sure a remote node actually stores your shard without re-downloading it?

Idea: the node pre-publishes a cryptographic commitment; on request it returns a compact ZK
proof of possession.

Key facts
@ Proof size 128 bytes;
o Client verifies in 5 ms without the shard itself;

(Plain: Store honestly — prove instantly — no blind trust required.)

—7/14

7. Component 4: On-Chain Anchor

For independent, tamper-proof verification the system stores key metadata on-chain.
Recorded on chain
@ Merkle roots of all current commitments;

o Verifying keys for ZK proofs.

Why it matters
@ Any client can verify a proof against the public root;
@ Full history available for audit;

o Write cost on an L2 chain (e.g., zkEVM) — <0.50.

(Plain: The blockchain stores no data — only anchors the truth.)

—8/14

Part | — Problem Solution

8. End-to-End: full cycle

Training Dataset ZK Prover

Figure 1: End-to-end data flow: the dataset is erasure-encoded, shards are distributed by a leaderless
BFT cluster, their commitments are anchored on-chain, storage nodes return compact ZK proofs, and
the client decodes the verified shards for model training.

—9/14

9. Key implementation highlights

Implementation focuses on modularity and smooth integration with existing ML pipelines:

Shard format: every sample is encoded into an independent shard set;
Coding layer: Reed—Solomon with kK = 8, n = 11 for durability;

Storage fetch: shards treated as distributed objects, assembled on demand;
ZK check: client verifies proof before download;

Integration: verified tensors flow into PyTorch DataLoader;

Extensibility: plug-and-play codecs, models, storage back-ends.

(Plain: The pipeline acts as an adaptable layer on top of mainstream ML tooling.)

—10/14

Part Il — Implementation

10. Data recovery and model feed

Each training session starts with fetching and checking shards:

@ Client requests an object ID and receives shards from multiple nodes;
Each shard arrives with its ZK proof;
After validation exactly k shards are downloaded;

Original sample reconstructed via RS-decode;

Resulting tensor is fed into the PyTorch model.

(Plain: The model learns only from verified data, even if part of storage is faulty.)

—11/14

Part Il — Implementation

11. Test results

On a LeNet-5 model trained on protected data:
e Validation accuracy reached 99% by epoch 7;

@ Training loss dropped from 0.35 to 0.019 in 10 epochs;

@ ZK proof verification takes 0.2 ms and does not slow training;

@ Overall storage reliability: >98.9% with overhead 1.37x.

Epoch | Train Loss Train Acc | Val Loss Val Acc
1 0.3459 90.04% 0.0977 97.03%
2 0.0919 97.14% 0.0587 98.12%
3 0.0611 98.12% 0.0476 98.47%
4 0.0473 98.53% 0.0364 98.86%
5 0.0380 98.81% 0.0360 98.77%
6 0.0332 98.92% 0.0362 98.81%
7 0.0278 99.11% 0.0318 99.00%
8 0.0255 99.23% 0.0344 98.83%
9 0.0216 99.30% 0.0338 98.97%
10 0.0194 99.37% 0.0297 98.98%

Table 1: Training and validation metrics per epoch

—12/14

Part Il — Implementation

Loss

12. Visual results advantages
LTJSS Cuﬁe
0.35 1 —— Train Loss
— Val Loss

0.30
0.25 A
0.20 4
0.15 4
0.10 1
0.05

2 6 8 10

Epoch

Figure 2: Decode time

Accuracy Curve

0.98 1
0.96 4
>
o
s
g
£ 0.94
0.92
—— Train Acc
0.90 - — Val Acc
2 4 6 8 10
Epoch

and reliability visualised.

—13/14

13. Conclusion

We presented a storage architecture that merges modern cryptography with fault-tolerant dis-
tributed design, enabling reliable and verifiable ML pipelines at scale.

By replacing triple replication with efficient erasure coding, substituting trust in nodes with
zero-knowledge proofs, and anchoring metadata on-chain, the system achieves security, durability
and cost efficiency simultaneously.

This paves the way for machine learning where security, reliability and economy coexist, with
no need to sacrifice one for another.

—14/14

	Part I — Problem Solution
	Part II — Implementation

