
Reliable and Cost-Efficient Dataset Storage
for Distributed Machine Learning

– 1/14

Part I — Problem Solution

1. Why the classical approach is outdated

Traditional dataset storage for ML often relies on full replication across several storage nodes.
This leads to:

Massive disk overhead: triple replication adds +200% storage cost;
Failure sensitivity: a node or data-center outage can stall the pipeline for hours or days;
Trusted-operator model: you must blindly trust storage providers;
Poor fit for federated ML: regional copies multiply the cost.

– 2/14

Part I — Problem Solution

2. Why do we need a new method?

Key challenges in distributed ML training
Modern pipelines must simultaneously:

Save space: triple replication doubles your bill;
Stay available: losing two or three nodes must not stop training;
Be verifiable: storage integrity needs cryptographic guarantees, not blind faith.

Goal
Build a storage layer that simultaneously:

1 Keeps overhead within 20–40%;
2 Survives node failures with zero data loss;
3 Lets any client verify integrity without trusted parties.

(Plain: We want it cheap, reliable & transparent — all at once.)
– 3/14

Part I — Problem Solution

3. High-level architecture

Our approach combines four foundational building blocks working as one cohesive system:
Erasure Coding — slashes storage cost while preserving durability;
Leaderless Byzantine Consensus — manages shards without central authority;
Zero-Knowledge Proofs (ZKP) — prove data are stored correctly without revealing
them;
On-Chain Anchor — makes metadata tamper-proof and publicly auditable.

Together they form a secure, scalable and verifiable pipeline, from encoding to model training.

(Plain: Goal: marry distributed-systems reliability with cryptographic transparency.)

– 4/14

Part I — Problem Solution

4. Component 1: Erasure Coding

Instead of three full copies we apply erasure coding — a more economical yet durable redundancy
scheme.

How it works
Split data into k data shards;
Add n−k parity shards via Reed–Solomon;
Any k of n shards reconstruct the original.

Benefits
Survives multiple node failures;
Overhead only +37% (example k=8, n=11) vs +200% replication;
Parallel fetch accelerates training.

(Plain: Less traffic, less storage — same durability.)

– 5/14

Part I — Problem Solution

5. Component 2: Leaderless Byzantine Consensus

Problem: which nodes store which shards, and what if some nodes misbehave?

Solution: an asynchronous BFT protocol with no single leader:
Every node votes — no single point of failure;
Tolerates up to ⌊(n−1)/3⌋ faulty or malicious nodes;
Cluster state and re-balancing are entirely decentralised.

(Plain: Leaderless consensus reliability without a centre.)

– 6/14

Part I — Problem Solution

6. Component 3: Zero-Knowledge Proofs of Storage

How to be sure a remote node actually stores your shard without re-downloading it?

Idea: the node pre-publishes a cryptographic commitment; on request it returns a compact ZK
proof of possession.

Key facts
Proof size 128 bytes;
Client verifies in 5 ms without the shard itself;

(Plain: Store honestly → prove instantly → no blind trust required.)

– 7/14

Part I — Problem Solution

7. Component 4: On-Chain Anchor

For independent, tamper-proof verification the system stores key metadata on-chain.

Recorded on chain
Merkle roots of all current commitments;
Verifying keys for ZK proofs.

Why it matters
Any client can verify a proof against the public root;
Full history available for audit;

Write cost on an L2 chain (e.g., zkEVM) — <0.50.

(Plain: The blockchain stores no data — only anchors the truth.)

– 8/14

Part I — Problem Solution

8. End-to-End: full cycle

Figure 1: End-to-end data flow: the dataset is erasure-encoded, shards are distributed by a leaderless
BFT cluster, their commitments are anchored on-chain, storage nodes return compact ZK proofs, and
the client decodes the verified shards for model training.

– 9/14

Part II — Implementation

9. Key implementation highlights

Implementation focuses on modularity and smooth integration with existing ML pipelines:

Shard format: every sample is encoded into an independent shard set;
Coding layer: Reed–Solomon with k = 8, n = 11 for durability;
Storage fetch: shards treated as distributed objects, assembled on demand;
ZK check: client verifies proof before download;
Integration: verified tensors flow into PyTorch DataLoader;
Extensibility: plug-and-play codecs, models, storage back-ends.

(Plain: The pipeline acts as an adaptable layer on top of mainstream ML tooling.)

– 10/14

Part II — Implementation

10. Data recovery and model feed

Each training session starts with fetching and checking shards:

Client requests an object ID and receives shards from multiple nodes;
Each shard arrives with its ZK proof;
After validation exactly k shards are downloaded;
Original sample reconstructed via RS-decode;
Resulting tensor is fed into the PyTorch model.

(Plain: The model learns only from verified data, even if part of storage is faulty.)

– 11/14

Part II — Implementation

11. Test results

On a LeNet-5 model trained on protected data:
Validation accuracy reached 99% by epoch 7;
Training loss dropped from 0.35 to 0.019 in 10 epochs;
ZK proof verification takes 0.2 ms and does not slow training;
Overall storage reliability: >98.9% with overhead 1.37×.

Epoch Train Loss Train Acc Val Loss Val Acc

1 0.3459 90.04% 0.0977 97.03%
2 0.0919 97.14% 0.0587 98.12%
3 0.0611 98.12% 0.0476 98.47%
4 0.0473 98.53% 0.0364 98.86%
5 0.0380 98.81% 0.0360 98.77%
6 0.0332 98.92% 0.0362 98.81%
7 0.0278 99.11% 0.0318 99.00%
8 0.0255 99.23% 0.0344 98.83%
9 0.0216 99.30% 0.0338 98.97%
10 0.0194 99.37% 0.0297 98.98%

Table 1: Training and validation metrics per epoch
– 12/14

Part II — Implementation

12. Visual results advantages

Figure 2: Decode time and reliability visualised.

Figure 3: *

Sample predictions: P – prediction, T – true label

The method delivers:
Up to 60% disk savings vs triple replication;
Tolerates loss of ⌊(n−1)/3⌋ nodes;
Cryptographic integrity with no trusted storage;
Seamless plug-in into existing ML workflows.

– 13/14

Part II — Implementation

13. Conclusion

We presented a storage architecture that merges modern cryptography with fault-tolerant dis-
tributed design, enabling reliable and verifiable ML pipelines at scale.
By replacing triple replication with efficient erasure coding, substituting trust in nodes with
zero-knowledge proofs, and anchoring metadata on-chain, the system achieves security, durability
and cost efficiency simultaneously.
This paves the way for machine learning where security, reliability and economy coexist, with
no need to sacrifice one for another.

– 14/14

	Part I — Problem Solution
	Part II — Implementation

