EFFECTIVE NUMERICAL-ANALYTICAL METHOD FOR MODELING THE DYNAMICS OF A FUEL CELL SYSTEM FOR A PULSED TYPE REACTOR

- Perepelkin E.E.
- Klimenko M.V.
- Polyakova R.V.

NEPTUN project LNP JINR

OUTLINE

- Mathematical model of the FE system for the NEPTUN project
- Parallel realization by GPU
- Results

Mathematical model

L

ACTIVE ZONE

HAMILTONIAN FORMALISM

$$\begin{split} & \underbrace{\overline{z} = \left\{q_{1}, ..., q_{2N}, p_{1}, ..., p_{2N}\right\}^{T}, \\ & \underbrace{\overline{z} = J\partial_{z}H, \text{ where } J = \begin{pmatrix}0 & I_{2N} \\ -I_{2N} & 0\end{pmatrix}, \partial_{z} = \left\{\partial_{z_{1}}, ..., \partial_{z_{4N}}\right\}^{T} = \left\{\partial_{q_{1}}, ..., \partial_{q_{2N}}, \partial_{p_{1}}, ..., \partial_{p_{2N}}\right\}^{T}, \\ & \overline{\eta} = \left\{u_{1}^{(r)}, ..., u_{N}^{(r)}, u_{1}^{(\varphi)}, ..., u_{N}^{(\varphi)}, p_{1}^{(r)}, ..., p_{N}^{(r)}, \tilde{p}_{1}^{(\varphi)}, ..., \tilde{p}_{N}^{(\varphi)}\right\}^{T}, u_{j}^{(r)} = r_{j} - R_{j}, u_{s}^{(\varphi)} = \varphi_{s} - \Theta_{s}, \tilde{p}_{n}^{(\varphi)} = p_{n}^{(\varphi)} / R_{n}. \\ & \underline{An \ approximation \ of \ Hamiltonian \ function} \\ & H_{a}(u, p) = \sum_{n=1}^{N} \frac{1}{2m_{n}} \eta_{2N+n}^{2} + \sum_{n=1}^{N} \frac{1}{2m_{n}} \eta_{3N+n}^{2} + \frac{1}{2} \sum_{j,s=1}^{N} \kappa_{j,s}^{(1,1)} \eta_{j} \eta_{s} + \frac{1}{2} \sum_{j,s=1}^{N} \kappa_{j,s}^{(1,2)} \eta_{j} \eta_{N+s} + \frac{1}{2} \sum_{j,s=1}^{N} \kappa_{j,s}^{(2,2)} \eta_{N+j} \eta_{N+s}, \\ & \text{where } \kappa_{j,s}^{(1,1)} = \frac{\partial^{2}U(R,\Theta)}{\partial r_{j} \partial r_{s}}, \ \kappa_{j,s}^{(1,2)} = \frac{\partial^{2}U(R,\Theta)}{\partial r_{j} \partial \varphi_{s}}, \ \kappa_{j,s}^{(2,1)} = \kappa_{s,j}^{(1,2)}, \ \kappa_{j,s}^{(2,2)} = \frac{\partial^{2}U(R,\Theta)}{\partial \varphi_{j} \partial \varphi_{s}}. \\ & \text{Motion \ equations } \boxed{\overline{\eta} = J\partial_{\eta}H_{a} = G\overline{\eta}, \ \partial_{\eta} = \left\{\partial_{\eta}, ..., \partial_{\eta_{1N}}\right\}^{T}, \\ & G = \begin{pmatrix}0 & D \\ -K & 0\end{pmatrix}, K = \begin{pmatrix}\kappa_{(1,1)} & \kappa_{(1,2)} \\ \kappa^{(2,1)} & \kappa^{(2,2)} \\ \kappa^{(2,2)} \end{pmatrix}, D = \begin{pmatrix}d^{(1,1)} & 0 \\ 0 & d^{(2,2)} \end{pmatrix}, d^{(1,1)} = d^{(2,2)} = \text{diag}\left(\frac{1}{m_{1}}, ..., \frac{1}{m_{N}}\right). \end{aligned}$$

DISSIPATIVE SYSTEM

$$\begin{split} \underline{Dissipative \ system} \ & L(\vec{r},\vec{v},t) = \left[\frac{mv^2}{2} - U(\vec{r})\right] e^{2\gamma t} \Rightarrow H(\vec{r},\vec{p},t) = \frac{p^2}{2m} e^{-2\gamma t} + U(\vec{r}) e^{2\gamma t}, \ where \ \vec{p} \stackrel{\text{def}}{=} \vec{p} e^{2\gamma t}, \\ \vec{\eta} \stackrel{\text{def}}{=} \left\{ u_1^{(r)}, ..., u_N^{(r)}, u_1^{(\varphi)}, ..., u_N^{(\varphi)}, p_1^{(r)}, ..., p_N^{(r)}, \tilde{p}_1^{(\varphi)}, ..., \tilde{p}_N^{(\varphi)} \right\}^T. \\ \underline{Motion \ equations} \ \begin{bmatrix} \dot{\eta} = G_{\gamma}(t) \vec{\eta}_{\pm} \\ G_{\gamma}(t) = G E(t), E(t) \stackrel{\text{def}}{=} \left(\frac{e^{2\gamma t}}{1_{2N}} & 0 \\ 0 & e^{-2\gamma t}} \\ I_{2N} \\ \end{bmatrix}, \\ \underline{Solution} \ \begin{bmatrix} \vec{\eta}(t) = e^{-\gamma t} \mathcal{M} \Big[\mathcal{E}(t) \vec{C}_{+} + \mathcal{E}(-t) \vec{C}_{-} \\ 0 \\ 0 \\ \end{bmatrix}, \ where \ \vec{C}_{\pm} \stackrel{\text{def}}{=} \left(\frac{\vec{A}_{\pm}}{\vec{B}_{\pm}} \right), \ \mathcal{M} \stackrel{\text{def}}{=} \left(\frac{M^{\circ}}{0} & 0 \\ 0 & M^{\circ} \\ 0 \\ 0 \\ \end{bmatrix}, \ \mathcal{E}(t) \stackrel{\text{def}}{=} \left(\frac{e^{i\vec{n}\overline{\Omega}}}{0} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}, \\ \vec{A}_{\pm} = \frac{1}{2} M^{-1} \Big\{ \vec{\eta}'(0) \pm \Gamma^{-1} \Big[\gamma \vec{\eta}'(0) + D \vec{\eta}''(0) \Big] \Big\}, \ \vec{B}_{\pm} = \frac{1}{2} M^{-1} \Big\{ \vec{\eta}''(0) \pm \Gamma^{-1} \Big[\gamma \vec{\eta}''(0) - K \vec{\eta}'(0) \Big] \Big\}, \\ \Gamma' \stackrel{\text{def}}{=} M' i \vec{\Omega} M'^{-1}, \ \Gamma'' \stackrel{\text{def}}{=} M'' i \vec{\Omega} M^{\circ -1}, \ \vec{\Omega} = \text{diag} \Big(\vec{\omega}_1 & ..., \vec{\omega}_{2N} \Big), \ \vec{\omega}_k = \sqrt{\omega_k^2 - \gamma^2}, \ \mathcal{M} \mathcal{E}(\pm t) \mathcal{M}^{-1} = e^{\pm i\mathcal{G}}, \\ \Omega^2 \stackrel{\text{def}}{=} M'^{-1} \Big(D K \Big) M' = M''^{-1} \Big(K D \Big) M'' = \text{diag} \Big(\omega_1^2, ..., \omega_{2N}^2 \Big). \end{aligned}$$

Parallel realization by GPU

LIBRARIES

Google Colab: NVIDIA A100 40Gb CUDA 12.8 Google Colab: Intel Xeon Skylake-SP CPU 2GHz Intel MKL 2025.0.0

Block	$D \cdot K, K \cdot D$	M', M'', ω^2	M'^{-1}, M''^{-1}	Γ',Γ''	$\Gamma'^{-1},\Gamma''^{-1}$	$ec{A}_{\!\pm},ec{B}_{\!\pm}$	$ec{\eta}(t)$
CPU	cblas_sscal	LAPACKE_sgeev	LAPACKE_sgetrf LAPACKE_sgetrs	cblas_cgemm	LAPACKE_sgetrf LAPACKE_sgetrs	cblas_caxpy cblas_cgemm cblas_cgemv	cblas_cgemv
GPU	cublasSdgmm	cusolverDnXgeev	cusolverDnSgetrf cusolverDnSgetrs	cublasCgemm	cusolverDnSgetrf cusolverDnSgetrs	cublasCaxpy cublasCscal cublasCgemv	cublasCaxpy cublasCscal cublasCgemv

CPU VS GPU

Rate = time_CPU / time_GPU

TOTAL RATE

Results

SYMMETRIC CONFIGURATIONS OF RADIAL DISPLACEMENTS OF THE RODS

 $\begin{array}{ll} \underline{Initial \ conditions} \ u_{n}^{(\rho)}\Big|_{t=0} = \left(\vec{u}_{n}, \vec{e}_{\rho}\right) = 0, \ u_{n}^{(\phi)}\Big|_{t=0} = \left(\vec{u}_{n}, \vec{e}_{\phi}\right) = 0, \ n \in N,\\\\ v_{n}^{(\rho)}\Big|_{t=0} = \left(\vec{v}_{n}, \vec{e}_{\rho}\right) = \begin{cases} v_{0}, \ n \in \Omega^{1} \\ 0, \ n \in \Omega^{l}, l = 2...L \end{cases}, \quad v_{n}^{(\phi)}\Big|_{t=0} = \left(\vec{v}_{n}, \vec{e}_{\phi}\right) = 0. \end{array}$

COMPONENTS OF EIGENVECTORS

Coordinate and momentum representations for the system of 468 elements

COMPONENTS OF EIGENVECTORS

Coordinate and momentum representations for the system of 468 elements

DISSIPATIVE SYSTEM

CONCLUSION

An important advantage of the proposed approach is the speed of numerically finding the phase trajectories of the system.

Note that in practice, initial state of the system $\mathbf{n}_0 = \mathbf{n}(0)$ is never exactly known. In reality, there exists multidimensional (4N) phase region V_0 of admissible initial parameters of the system. Thus, it is necessary to map initial region V_0 into region V_t , corresponding to moment of time t. Such a procedure requires multiple calculations for the set of initial states of the system $\mathbf{n}_0 \in V_0$. Knowing region V_t , the elements of which are $\mathbf{n}(t)$, it is possible to make an estimate of the stability parameters of the reactor.