11h International Conference “Distributed
Computing and Grid Technologies in Science
and Education” (GRID’25),

10 July 2025

ARCHITECTURE, ANALYSIS
AND DESIGN OF AN
ADAPTIVE MULTI-AGENT
INTELLIGENT SYSTEM

Elena Vyacheslavovna Nurmatova
Evgeny Igorevich Zaitsev

Key aspects AMAIS

1. The basis Is a set of interacting intelligent agents
2. The essence of adaptability is the ability to dynamically change.

3. The behavior of agents (strategies, rules, decision-making policies, parameters),
the structure of interactions (communication patterns, coalitions, agent roles), the
composition of the system (adding/removing agents) are changing.

4. The causes of changes in the external environment are possible due to new
threats, constant and dynamic data updates, and changes in time and hardware
resources. There may also be changes within the system (agent failures, conflicts,
load changes), or changes in goals and success criteria.

5. The purpose of adaptation is to maintain or improve efficiency, reliability,
sustainability, and the ability to achieve goals in an environment of uncertainty
and variability.

Architecture of an adaptive multi-agent intelligent system

Intelligent software agents
solve applied tasks using a

knowledge Dbase. They
2) interact with each other, as
g ’ 'L%;ﬂ.. i well as with microservices
= = |1 and system agents that
- | monitor system resources
« and balance the load in
f e . Ccase of a large number of
; L — I L, requests.
' System Agents / OS Services : : System Agents / OS Services :
é OS Kkernel E E ‘ OS kernel i
Al asenee ... e |

Network

Modeling multi-agent system using the python-framework pyMAS

e to implement an agent with first-order e to connect the agents, we define the network
dynamics adjacency matrix
from pymas.agent import Agent from pymas.network import Network

Create my custom Agent class called MyAgent . } }
Create an instance of Network with 1ntended topology:
class MyAgent(Agent):

- Define Adjacancy matrix:
def _init_ {self, ni=1, no=1, ns=2, f=None, *, tStart=8, % A = np.array{[[&, 1, 1, &, &, &],
init_states=None, index: int=None): [1, &, 1, 1, &, 1],
Agent. init (self, ni, no, ns, f, tstart=tStart, A [1 1. 6. 8. 1 E]

1nit_states=init states, index=index) T T e ’

[e, 1, &, &, &, 1],

My custom dynamics: Single integrator: x dot(t) = u{t) => f = u [, &, 1, &, &, 1],
def f{self, t, x, u): [&, 1, &, 1, 1, @]])
PELUR L # - Create the network instance:

net = Network(d, listOfAgents)
def output{self):

return

A
e oyMAS

Modeling multi-agent system using the python-framework pyMAS

e tO implement the distributed control law e torun asimulation with a Specified agent

from pymas.dcontroller import Dcontroller from pymas import mas

Create a custom distributed contreol strategy by implementing Dcontroller methods: # Create a MAS 1nstance
class MyDcontroller(Dcontroller): mas = mas.MAS{network=net, dcontroller=dcont)

def __init_ {=self, net: MNetwork):

peenereller. Lnle (self, mee) # Run the simulation from t=8 to t=15 with step size of &.85 [sec]

mas.run{@, 15, &.85)

def rule(self, agent, neighbour):
return nelghbour.stateTrajectHistory[-1] - agent.stateTrajectHistory[-1]

def controlProtocol{self, agentIndex: int, +t): # Simple sigma protocol
DEBUG:
print("For agent ", agentIndex, "-- t: ", 1)

if £t == @& then return zero output wvector (since u{@) 1= &):
if t == self.net.agents[agentIndex].t5tart:
return np.zerosishape={self.nil, 13}
Calculate the control input of "agentIndex™-th agent:
U = np.zeros{shape={self.ni, 1}
for a in self.net.agents:

if self.net.areleighbours{a.index, agentIndex):

U += self.ruleiself.net.agents[agentIndex], a)

return u

Create the Dcontroller instance:
dcont = MyDcontroller{net=net)

Modeling AMAIS: Class Diagram Legend

‘—contains—b

isa {>

attribute : type
function_name() : return type

+ indicates public methods / attributes

- indicates private methods / attributes

MAS

- network : Network
- dcontroller : Dcontroller
- init_time

- end_time ‘il

- time_step

+ run(init_time, end_time, time_step) : None

+ plot() : None

1

Agent v
+ni @ int M Dcontroller
+ no : int
+ ns : int - :
+ index : int + A : numpy.darray GRS
+ stateTrajectHistory : numpy.ndarray 4—1...n—‘ + agents : List[Agent] 4—1—‘ :
+ times : numpy.ndarray
- tstart : float q

; . - Abstract rule(agent : Agent, neighbour : Agent) : numpy.ndarray
o CUTE ERC LS GO RGR 2y, GOEIIAlERail & ot - Abstract controlProtocol(agentIndex, t) : numpy.ndarray

- Abstract f(t, x, u) : numpy.darray
+ evolve(t, u) : None

JA

MyDcontroller

MyAgent

- rule(agent : Agent, neighbour : Agent)
- f(t, x, u) : numpy.darray numpy . ndarray
- controlProtocol(agentIndex, t) : numpy.ndarray

Interaction of agents with the knowledge base

To access the knowledge base, software agents use both clear and fuzzy SQL queries. An
example of a fuzzy query involving two linguistic variables (Performance, Price) with piecewise
linear membership functions, as well as the result of its execution after accessing the table, is
shown in the figure.

a term-set of values linguistic

Performance variable (LV) “Performance":
Hs 1 low average high "low", "medium", "high“
—— i x oo a term-set of values LV
N 47 3,2 13 . . " " n - n
; = o %= Price": "low", "medium",
0 09 18 26 33 a2 G}; 3 N3 26 319 "above average*
. . N4 31 48 As a result of a vague query
t = s NS 23 2,5 for selecting objects “with
Ha| low average above-average }]
N : SELECT * from TableU_1 where (Price = "low" AND Performance = "high") low price and hlgh
02 :_‘:::::::_’% >(= . 4 ~ e | performance”, we have two
: : . 3 N3 26 39 0,8 records that cannot be
° oL W gy e s ‘ N4 3 4 07 obtained using clear SQL

queries.

Fuzzy query processing subsystem

(Module for adding data to linguistic variables and their term sets <

C

Fuzzy-sql

i

A

Module for generating parameters for fuzzy
queries

Configuring Fuzz].r Query Param@

¥
.)I Processing of fuzzy queries
MEetnic Withiindexing

Data access operation Scanning a cluster index
Request cost 12.013
Input/output operation time 8.874

CPU time (ms) 219

Elapsed time (ms) 195

Withoutiindexing
Key Search

0.089
0.003

16
63

Query execution speed

Synthesis of the logical structure of the knowledge base

Algorithm for solving the problem of
synthesizing the optimal logical structure of DKB

l

First stage

Matrix of

Reduced search tree / records

traversal algorithm placement by

/ \ system nodes

Set of solution

variants for \ Algorlthm for listing Initial par.tltlonmg Approximate
iteration of the options algorithm solution of the
algorithm + * problem

Logical records

Placing records in 1 localization algorithm

the system to
iterate the
algorithm l

Second stage
| Set of records and their

N . / placement by system nodes
Partitioning algorithm

Knowledge base optimization

The mathematical formulation of the problem and is of the form

min
{xit ytfyjm} ézﬁpgﬂQ t lwst [ﬁ:l(l —Zﬁﬁpr)(tfmc meﬂf) +
?E:lzsr (tt{mk 4 t?.‘fer Wﬂﬂsf)]} (1)

In here t@* — average duration of forming one request as part of a transaction;
t>e" — average duration of route selection, establishment of logical connections between the
client node (r) and the server node (m);

trensf_ average duration of data partition (logical record) transfer from client node (r) to

rm

server node (m) along the optimal path;
t%¢ — average time of access to the DKB and record search;

&gp— frequency of use of arequest (p) by a transaction (k);
(p,(fp— binary sign of the use of arequest (p) by a transaction (k).

Criteria for the effectiveness of the synthesis task

Tahle 1. Table captions should be placed abovwe the tables Criteria For the effectiveness of the
srnthesiztask

Wariahle Walues
Determmines the allocaton oflogical entry () ofthe EBE to
partition (2
Xir Xi=1,1f the entry made itinto the section;
Xi=0, otherwize

Specifies the placement ofpatition () on the server node
(1 of the distributed sy stem:

¥Yer Y= 1, if the partition iz hosted onthe system node
SErvVer

Determmines whether a transaction (5) consisting of (n)
R gueries updates a partition ()

Wip=1,1f the section hasbeenupdated

The variahle B, defines the set of nodes (r) of DEKB servers

fized by transaction (s):

T I
Zer B.= ZZW_&I[JW
t=1 (=1
Esrz]., ".RFlthP_sp-:_‘ 1

IMogazarens P, defines the set of {m) DKB server nodes
contatning transaction (s) data of partition ()
j

Eﬂ‘.'l.
£t P = Zw;j‘r ¥im

oo =1 =tk Ou= 1

Thanks for your attention

