Study of the associated production of the Higgs boson with top quarks in the ATLAS experiment at the Large Hadron Collider

Nazim Huseynov

DLNP seminar 26 February 2025

Search for the production of a Higgs boson in association with a single top quark in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for the production of a Higgs boson in association with a single top quark, tH, is 6 presented. The analysis uses proton-proton collision data corresponding to an integrated luminosity of 140 fb⁻¹ at a centre-of-mass energy of 13 TeV, collected by the ATLAS detector 8 at the LHC. The search targets Higgs-boson decays into bb, WW^* , ZZ^* , and $\tau\tau$, accompanied 9 by a lepton (electron or muon) from the top-quark decay. Multivariate techniques are employed 10 to enhance the separation between signal and background processes. The observed signal 11 strength, μ_{tH} , defined as the ratio between the measured cross-section and the predicted 12 Standard Model value, is $\mu_{tH} = 8.1 \pm 2.6$ (stat.) ± 1.9 (syst.). The corresponding observed 13 (expected) upper limit at the 95% confidence level on the tH cross-section is found to be 13.9 14 (6.1) times the value predicted by the Standard Model, while it is 2.4 (1.2) under the inverted 15 Yukawa coupling $((y_{1} = -1))$ hypothesis. 16

ATLAS Note ANA-HIGG-2020-02-INT2 8th June 2024

Search for associated production of a Higgs boson and a single top quark using p p collisions at 13 TeV with the ATLAS detector in the $H \rightarrow b\bar{b}$ final state.

M. Aly^a, I. Boyko^b, N. Bruscino^c, A. Didenko^b, S. Gentile^c, O. Koval^b,
 N. Huseynov^b, M. Patzwahl^d, R. Peters^a, J. Singh^d, A. Sopczak^d, I. Souslov^b,
 A. Tropina^b, M. Vatrt^d, V. Vecchio^a, I. Yelechkich^b

a "School of Physics and Astronomy, University of Manchester," Joint Institute for Nuclear Research, "INFN Roma and Sapienza Universita' di Roma, Dipartimento di Fisica, "Czech Technical University in Prague

10 This is a bare bones ATLAS document. Put the abstract for the document here.

17 © 2025 CERN for the benefit of the ATLAS Collaboration

18 Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

- © 2024 CERN for the benefit of the ATLAS Collaboration.
- 12 Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

The tH analysis team

Institute	Name	Contribution	
	I. Boyko	BDT variables, C&C Analysis	
	A. Didenko	Cross-check neural network implementation and optimization	
Dubno	N. Huseynov	NTuples Production, C&C Analysis, reco. studies, fakes estimation	
Dubha	O. Koval	Truth studies, alternative MC generation	
	A. Tropina	BDT variables, C&C Analysis, high-pT jets studies	
	I. Yelechkich	Cross-check neural network implementation and optimization	
Manchester	M. Aly	Fit expert, background studies, BDT variables	
	V. Vecchio	Analysis Contact, NTuple Production, fit expert, background studies, BDT variables	
	R. Peters	Supervisor	
Bomo	N. Bruscino	MC Preparation, NTuple Production, BDT developer, Foam developer, fit expert	
Rome	S. Gentile	NTuple Production	
D	M. Patzwahl	Cross-check neural network optimization	
Prague	A. Sopczak	Cross-check neural network optimization	
Dubna	I. Suslov	C&C Analysis, BDT variables	

Higgs boson production modes

Motivation

- tH is sensitive to Top-Higgs and W-Higgs Yukawa couplings
 Direct probe of the magnitude and sign of Top-Higgs Yukawa
 Higgs is CP-even (SM).
- \Box For a = 0, interference term destructive
- \Box For a = 180° or $\mathbf{y}_{t,\text{ITC}} = -\mathbf{y}_{t,\text{SM}}$,

□ interference term of (ttH vs WWH) is constructive

 $\Box \sigma(tH)_{ITC} \approx 11 \bullet \sigma (tH)_{SM}$

$$\sigma(ttH) \sim |y_t|^2 k^2 (A\cos^2\alpha + B\sin^2\alpha)$$

 $\sigma(tH) \sim |y_t|^2 |k^2 |A\cos^2\alpha + B\sin^2\alpha| + Cy_t k\cos\alpha + Dy_t k\sin\alpha + E$

Great probe of new physics !

Eur.Phys.J.C(2015)75:267

6

Motivation: tHqb Feynman diagrams

b

Analysis strategy

- Ntuple production. Skimming.
- Define Preselection Region
- Use obvious cuts to achieve orthogonality with other channels.
- Use Rectangular Cuts
- Apply rectangular cuts (e.g., on variables like lepton multiplicity, jet multiplicity, b- tagging, transverse momentum (pT), etc.) to define the Signal Region (SR) and Control Region (CR).
- Estimate Signal Significance
- Calculate the signal significance to evaluate the potential discovery or exclusion of the signal.
- Estimate Background from Fakes
- Estimate the contribution of fake or misidentified objects (e.g., fake leptons or jets) to the background.
- Use MVA (BDT, NN) for Improved Separation
- Use advanced multivariate analysis techniques, such as Boosted Decision Trees (BDT) or Neural Networks (NN), to enhance the separation between signal and background events.
- Fitting Procedure
- Perform a fitting procedure to model the signal and background distributions and extract relevant parameters.
- Combine Results
- Combine the results from different regions and analyses to obtain a final measurement or limit.

Ntuples and triggers

Using single-lepton ntuples produced with SingleTopAnalysis framework

- from TOPQ1 derivation (ML uses multilepton type)
- sharing same object selections and same MC samples for 1L and ML analyses
- single lepton triggers applied in all channels (trigger matched lepton pT > 27 GeV)

Triggers			
Year	Single-electron trigger	Single-muon trigger	
2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium HLT_e120_lhloose	HLT_mu20_iloose_L1MU15 HLT_mu50	
2016–2018	HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0	HLT_mu26_ivarmedium HLT_mu50	

Process	Generator	Order (scheme)	PDF set	Partor shower	PDF set (tune)
Signal					
tHq	MadGraph5_aMC@NLO 2.6.2	NLO (4FS)	NNPDF3.0NL0 nf4	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
		Back	grounds		
tī	Powheg Box v2	NLO (5FS)	NNPDF3.0nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
V+jets	Sherpa 2.2.1	NLO+LO	NNPDF3.0nnlo	-	-
Diboson	Sherpa 2.2.1-2	NLO+LO	NNPDF3.0nnlo	-	-
Triboson	Sherpa 2.2.2	NLO+LO	NNPDF3.0nnlo	-	-
$t\bar{t}Z$	MadGraph5_aMC@NLO 2.3.3	NLO	NNPDF3.0nlo	Рутніа 8.210	NNPDF2.3L0 (A14 tune)
$t\bar{t}W$	Sherpa 2.2.10	NLO	NNPDF3.0nnlo	-	-
ttH	Powheg Box v2	NLO (5FS)	NNPDF3.0nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
t-channel	Powheg Box v2	NLO (4FS)	NNPDF3.0nlo nf4	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
tW	Powheg Box v2	NLO (5FS, DR)	NNPDF3.0nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
s-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
tZq	MadGraph5_aMC@NLO 2.3.3	NLO	NNPDF3.0nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
tWH	MadGraph5_aMC@NLO 2.8.1	NLO (5FS, DR)	NNPDF3.0nlo	Рутніа 8.245р3	NNPDF2.3L0 (A14 tune)
tWZ	MadGraph5_aMC@NLO 2.3.3	NLO	NNPDF3.0nlo	Рутніа 8.212	NNPDF2.3L0 (A14 tune)
ttt	MadGraph5_aMC@NLO 2.2.2	NLO	NNPDF3.1nlo	Рутніа 8.186	NNPDF2.3L0 (A14 tune)
tīttī	MadGraph5_aMC@NLO 2.3.3	NLO	NNPDF3.1nlo	Рутніа 8.230	NNPDF2.3L0 (A14 tune)
ggH	Powheg Box v2	NLO	CT10	Рутніа 8.210	CTEQ6L1 (AZNLO tune)
qqH	Powheg Box v1	NLO	CT10	Рутніа 8.186	CTEQ6L1 (AZNLO tune)
WH	Рутніа 8.186	LO	NNPDF2.3lo	-	-
ZH	Рутніа 8.186	LO	NNPDF2.3LO	-	-

Cross-sections of the MC processes

Standard model cross sections for tH signal as well as for the most relevant background processes estimated from MC simulation. The cross sections are quoted for pp collisions at $\sqrt{s} = 13$ TeV.

Process	Cross section [fb]
$t\overline{t}H$	507 [53]
tHq	74.3 [53]
tHW	$15.2 \ [87]$
$\rm ggH$	$4.86 \times 10^4 \ [53]$
qqH	$3.78 \times 10^3 \ [53]$
WH	$1.37 \times 10^3 \ [53]$
\mathbf{ZH}	884 [53]
$t\overline{t}Z$	839 [5 <mark>3</mark>]
$t\overline{t}W$	$650\ [53,\ 69,\ 70]$
$t\overline{t}WW$	6.98 [65]
WZ	$4.50 \times 10^4 \ [88]$
$\mathbf{Z}\mathbf{Z}$	$1.69 \times 10^4 \ [88]$

JHEP07(2023)092

The Skimming procedure

An Express Tour of the Process

Skimming is a 2-step process

- ***** Step 1: on Grid O(50) reduction in N-tuple sizes
- ✓ Fully Pythonic code
- ✓ Filter events: >3 b-jets @85%, >3 jets, 1 Loose lepton, MET >25 GeV
- ✓ Filter Truth: >2 b-jets, >0 spectator-jets
- ✓ Filters un-wanted branches
- ***** Step 2: on HT-Condor—O2) reduction in Grid-skimmed sizes
- ✓ ROOT-based code
- ✓ Tighter filter to define pre-selection: >3 b-jets @70%
- ✓ Compute new variables e.g.
 - ✓ event BDT & Foam score,
 - ✓ Various object containers (leptons, jets, ...) and their kinematics
 - ✓ MC-related factors (k-factor, x-section, ...)
 - ✓ Discriminating reco-level variables
- ✓ Drop branches only needed for new variables

Object selection

Common selection of electron, muons and hadronic taus

- electrons: p_T > 27 GeV + ID TightLH + PLImprovedTight
- muon: p_T > 27 GeV + ID Medium + PLImprovedTight
- hadronic's: RNN Medium \rightarrow veto applied (==1L and ==0 τ_{had})

	Pre-selected electron	Pre-selected muon
Identification	looseAndBLayerLH	medium
Acceptance	$p_{\rm T} > 10 {\rm GeV}, \eta^{ m clust} < 2.47$	$p_{\rm T} > 10 {\rm GeV}, \eta < 2.5$
	$except \ 1.37 < \eta^{clust} < 1.52$	
Impact parameter	$ d_0/\sigma(d_0) < 5.0$	$ d_0/\sigma(d_0) < 3.0$
	$ z_0 \sin(\theta) < 0.5 \mathrm{mm}$	$ z_0\sin(\theta) < 0.5\mathrm{mm}$
Overlap removal	See Sectio	on 5.8
	Electron	Muon
Identification	tightLH	medium
Isolation	PLImprovedTight	PLImprovedTight

LIGHT LEPTONS SELECTION

HADRONIC TAUS SELECTION

	$ au_{ m had}$
Acceptance	$p_{\rm T} > 20 { m GeV}, \eta^{ m clust} < 2.5$
	except 1.37 < $ \eta^{\text{clust}} $ < 1.52
Number of tracks	1 or 3
Identification	RNN Medium (Loose)
Electron veto	electron BDT Loose (Loose)
Overlap removal	See Section 5.8

Object selection

Common selection of jets

EMPFlow (AntiKtEMPFlow) jets $p_T > 20$ GeV and $|\eta| < 4.5$

- Both JVT and fJVT requirements are applied
- DL1r PCBT working point used in all channels
- Overlap Removal on loose leptons and jets

Pre-selected jet			
Collection	AntiKt4EMPFlowJets		
Acceptance	$p_{\rm T} > 20 { m GeV}, \eta < 4.5$		
Jet Vertex Tagger JVT > 0.5 if $ \eta < 2.4$ and $p_{\rm T} < 60$ GeV			
	fJVT < 0.4 if 2.5 < $ \eta $ < 4.5 and $p_{\rm T}$ < 120 GeV		
Overlap removal	See Section 5.8		
b-tagging jet			
Acceptance	$p_{\rm T} > 20 { m GeV}, \eta < 2.5$		
<i>b</i> -tagging DL1r algorithm			

JETS

Definition of analysis regions

Preselection region		
Number of leptons(PLIVTight)	1	
Number of hadronic taus	0	
Number of b-jets(WP 70%)	≥ 3	
Missing energy, $E^{miss}{}_{T}$	≥25GeV	
ttHbb veto	! $(n^{70\%}_{b} \ge 4 \&\& n_{j} \ge 5)$	
	Signal region	Control region
Number of leptons(PLIVTight)	1	1
Number of hadronic taus	0	0
Number of b-jets(WP 70%)	3,4	• ≥ 2
Missing energy, $E^{miss}T$	≥25GeV	≥25GeV
ttHbb veto	! $(n^{70\%}_{b-jets} \ge 4 \&\& n_{jets} \ge 5)$! $(n^{70\%}_{b-jets} \geq 4$ && $n_{jets} \geq 5)$
Number of forward jets, n ^{fwd} jets	≥ 1	0

Pre-selection region and yields

Processes	Pre-selection	
tH tWH tt $+ \ge 1b$ tt $+ \ge 1c$ tt $+ $ light ttH	73.80 ± 0.15 49.62 ± 0.04 60170 ± 50 33585 ± 29 106290 ± 90 1676.9 ± 1.4	
ttW	351.0 ± 0.8 362.01 ± 0.31 170.54 ± 0.25	
tWZ	$ \begin{array}{l} 170.34 \pm 0.23 \\ 2.2157 \pm 0.0019 \\ 5240 \pm 5 \end{array} $	
wt channel t channel	5849 ± 5 3223 ± 4	
s channel W + jets	259.71 ± 0.22 4072 ± 4	Nti
Z + jets VV	$\begin{array}{c} 609.5 \pm 0.6 \\ 291.79 \pm 0.26 \end{array}$	
other Higgs Rare top	$\begin{array}{c} 25.054 \pm 0.023 \\ 8.936 \pm 0.008 \end{array}$	
Fakes	8028 ± 7	
Total	225640 ± 190	
Data	244167	

 $^{ight}_{lepton} = 1$ (PLIV isolation) $^{VP70}_{bjets} \ge 3$ $^{uiss}_T > 25$ GeV $N_{jets} \ge 5$ && $N_{jets} \ge 4$) - orthogonality condition with ttH(bb)

C&C analysis

C&C analysis: Significance & Limit of tHq(SM)

Preselection Significance = 0.15Signal Region Significance = 0.21Improving $\approx 40\%$

tHq(SM): Significance = 0.21

95% C.L.s upper limit				
-2σ	-1σ	exp.median	+1σ	+2σ
5.00	6.71	9.32	12.96	17.38

Multidimensional Multivariate Analysis

- Multi-class BDT (Boosted Decision Trees)
- Neural Network

Multi-class BDT (Boosted Decision Trees)

Multi-classification BDT (Gradient) with k-fold method

- 5<u>hypothesis:</u> tH vs. tī+≥1b vs. tī+≥1c vs. tī+light vs. Others
- <u>pre-selection</u>: $n_L=1 + n_{\tau}=0 + n_b^{70\%} ≥ 3 + E_T^{miss} ≥ 25GeV + ttH-veto$
- hyper-parameters:
 - + Folds = 10, nEstimators = ~4k (more details in backup)

Procedure for the "optimal" set of input variables:

- starting with <u>119</u> variables
- \rightarrow remove less important variables (gain<1%)
- \rightarrow remove the most correlated ones (| ρ |>75%)
- ending up with <u>26</u> variables
- check modelling in pre-selection region
- post-EB#1: remove 3 mis-modelled variables
 - + $n_j(CBT bin4)$, $n_j(CBT bin5)$ and m_{3jets}
- post-EB#1: include 2 new variables
 - + $M(b_{top}, j_{tag})$ and $|\eta(b_{top}, j_{tag})|$
- ending up with 25 variables
- check post-fit modelling in SR and CR

Variable ranking (gain) representing the overall gain in the multi-class BDT

Variables Definitions

Variable	Meaning
$n_{j,t_{\rm had}}(\chi^2_{\rm min, ttl}, \text{PCBT-bin 4})$	number of jets that belong to the hadronic top-quark found from reconstructing $t\bar{t}$ events but allowing only Hypothesis I as described in Appendix A.3 within the 4 th PCBT bin
$n_{j,t_{\text{had}}}(\chi^2_{\text{min, ttAll}}, \text{PCBT-bin 4})$	number of jets that belong to the hadronic top-quark found from reconstructing $t\bar{t}$ events as described in Appendix A.3 within the 4 th PCBT bin,
$n_{j,t_{\text{had}}}(\chi^2_{\text{min, ttAll}}, \text{PCBT-bin} \in \{1, 2, 3\})$	number of jets that belong to the hadronic top-quark found from reconstructing $t\bar{t}$ events as described in Appendix A.3 within the 1 st , 2 nd or 3 rd PCBT bin
$id(\ell_0)$	identification number of the lepton combining charge and flavour information
$p_{\rm fwd,0}^T$	transverse momentum of the leading forward-jet
Sphericity	as defined in [3]
$\chi^2_{\min,ttAll}$	the minimum χ^2 value found from reconstructing $t\bar{t}$ events as described in Appendix A.3
$n_{j,\text{not-}t_{\text{had}}}(\chi^2_{\min, \text{ ttl}}, \text{PCBT-bin} \in \{1, 2, 3\})$	number of jets that do not belong to the hadronic top-quark found from reconstructing $t\bar{t}$ events but allowing only Hypothesis <i>I</i> as described in Appendix A.3 within the 1 st , 2 nd or 3 rd PCBT bin
$p_{\mathrm{light,1}}^{T}$	transverse momentum of the 2^{nd} leading jet failing the <i>b</i> -tagging requirement
$\chi^2_{\text{top-higgs}}(M_H = 111.5, M_t = 168)$	the minimum χ^2 value found from reconstructing $tHq(H \rightarrow b\bar{b})$ events, where the leptonic W from the top quark decay is reconstructed using the neutrino reconstruction technique described in Appendix A.1
$\chi^2_{ m min,ttl}$	the minimum χ^2 value found from reconstructing $t\bar{t}$ events allowing only Hypothesis I as described in Appendix A.3
DL1r _{light,0}	pseudo-continuous b-tagging distribution for the leading jet failing the b-tagging requirement
$p_{\mathrm{light,2}}^{T}$	transverse momentum of the 3^{rd} leading jet failing the <i>b</i> -tagging requirement

Variables Definitions

$\eta_{ m light,0}$	pseudo-rapidity of the leading jet failing the b-tagging requirement
$\chi^2_{\text{top-higgs}}(M_H = 113, M_t = 165)$	the minimum χ^2 value found from reconstructing $tHq(H \rightarrow b\overline{b})$ events, where the leptonic W from the top quark decay is reconstructed using the neutrino reconstruction technique described in Appendix A.1
$p_{\rm light,0}^T$	transverse momentum of the leading jet failing the b-tagging requirement
$\Delta\eta_{ m top-higgs}$	the $\Delta \eta$ between the reconstructed top quark and the reconstructed Higgs boson according to the minimum χ^2 method
$n_{j,t_{\text{had}}}(\chi^2_{\text{min, ttl}}, \text{PCBT-bin 0})$	number of jets that belong to the hadronic top-quark found from reconstructing $t\bar{t}$ events but allowing only Hypothesis I as described in Appendix A.3 within the 0 th PCBT bin
n _j	number of jets
$m_{t_{\rm had}}(\chi^2_{ m min, \ ttAll})$	the mass of the reconstructed hadronic top-quark found from reconstructing $t\bar{t}$ events as described in Appendix A.3
$m_{t_{\rm had}}(\chi^2_{ m min, ttl})$	the mass of the reconstructed hadronic top-quark found from reconstructing $t\bar{t}$ events but allowing only Hypothesis I as described in Appendix A.3
$\eta_{ m light,2}$	pseudo-rapidity of the 3^{rd} leading jet failing the <i>b</i> -tagging requirement
$\Delta R(q_1^W, q_2^W)$	the minimum ΔR between the two jets assigned to the hadronic W decay from reconstructing $t\bar{t}$ events as described in Appendix A.3
$M(b_{top}, j_{tag})$	the invariant mass of the <i>b</i> -jet from top decay found using a reconstruction of $tHq(H \rightarrow b\overline{b})$ events and the light-flavour jet most de-correlated from the top quark system. The light jet is chosen such that it maximises the invariant mass $M(b_{top}, j_{tag})$
$\eta_{ m tag}$	the η of the light-flavour jet, η_{tag} most de-correlated from the top quark system. The light jet is chosen such that it maximises the invariant mass $M(b_{top}, j_{tag})$

24

Variables modelling

Variables modelling

26

Variables modelling

Neural Network

- Deep Neural Network used as tool to classify tH(bb) signal and main backgrounds
- Multi-classification with five possible output categories
- Employs Keras API to model DNN 4 hidden layers with [90,90,90,30]structure
- Initial results are comparable with the existing MVA
- DNN still in very early stages, big room for improvements in
- The network structure and setup
- Implementation of new reco-level variables for training
- Choice of learning algorithm and performance in data

Process	DNN AUC	BDT AUC
tH	0,84	0,86
ttb	0,81	0,75
ttc	0.61	0.60
ttL	0.79	0.78
others	0.75	0.64

Non-prompt backgrounds

- Non-prompt (fake) lepton background originated by HF/LF jets mis-reconstructed as electron or muons - small (3-5%) but not negligible background
- * Fake background by the Matrix Method with IFF prescription
- * Performed at the 'Sklimming' level using the FakeBkgTools package
- ***** uses **FakeEfficiencyTool** to extract efficiency maps from data
- * Fake and real efficiencies parameterised in p_T - η space
- * Estimation performed in *"fake-enriched"* regions
- * PLIV Tight efficiency maps used in-line with the ML analyses
- * A conservative 50% normalisation uncertainty is used on yields

Non-prompt backgrounds

Fitting

Profile likelihood fit with BDT scores as templates

SM scenario : Yields of the analysis (pre/post fit)

pre-fit

•		
	SR	CR (tt+ \geq 1b)
tH	34.7 ± 2.3	7.4±1.2
tWH	4.6 ± 2.6	19 ± 10
$tt + \ge 1b$	6800 ± 1100	$20\ 100\pm 2600$
$tt + \ge 1c$	4000 ± 2400	$11\ 000 \pm 6000$
tt + light	$19\ 300 \pm 3300$	$23\ 100\pm 500$
ttH	120 ± 16	680 ± 70
tt + Z	68 ±9	340 ± 40
tt + W	22.8 ± 3.4	149 ± 22
tZq	69 ± 7	20.4 ± 1.9
tWZ	0.20±0.10	0.9 ± 0.5
Wt channel	970 ± 260	1500 ± 500
t channel	1070 ± 180	350 ± 120
s channel	43 ± 8	40 ± 11
W + jets	740 ± 310	900 ± 400
Z + jets	140 ± 50	100 ± 40
VV	48 ± 25	70 ± 40
other Higgs	6 ± 5	5.3 ± 2.9
Rare top	0	3
Fakes	1700 ± 500	1600 ± 500
Total	$35\ 000 \pm 5000$	$60\ 000\ \pm 8000$
Data	35 869	65 002

post-fit

	SR	$CR(tt + \ge 1b)$
tH	249.481±nan	52.45±3.6
tWH	32.7793±nan	135.63±12
$tt + \ge 1b$	8200 ± 1000	25 600 ±1900
$tt + \ge 1c$	3800 ± 1400	9900 ±3200
tt+ light	$18\ 600\ \pm 1100$	23 500 ±2100
ttH	121 ±16	690 ± 70
tt + Z	68 ±9	340 ± 40
tt + W	22.9 ± 3.3	149 ±21
tZq	69 ±6	20.5 ± 1.9
tWZ	0.20±0.11	0.9±0.5
Wt channel	980 ± 250	1600 ± 500
t channel	1060 ± 170	350 ±120
s channel	42 ± 7	40 ± 11
W + jets	750 ± 300	900 ± 350
Z + jets	140 ± 50	100 ± 40
VV	47 ± 24	70 ± 40
other Higgs	6 ±4	5.3±2.9
Rare top	0	3
Fakes	1700 ± 500	1600 ± 500
Total	35 870 ±230	65 000 ±400
Data	35 869	65 002

32

ITC scenario : Yields of the analysis (pre/post fit)

pre-fit

	SR	CR(tt+>1b)
tH	680 ± 110	106 ± 19
tWH	32 ± 4	114 ± 12
<i>tt</i> +>1b	6800 ± 1100	20100 ± 2600
tt + > 1c	4000 ± 2400	11000 ± 6000
<i>tt</i> + light	$19\ 300\pm 3300$	23100 ± 3500
ttH	120 ± 14	683 ± 34
tt + Z	68 ± 9	340 ± 40
tt + W	20.1 ± 3.0	134 ± 19
tZq	69 ± 7	20.4 ± 1.9
tWZ	0.20 ± 0.10	0.9 ± 0.5
Wt channel	970 ± 260	1500 ± 500
t channel	1070 ± 180	350 ± 120
s channel	43 ± 8	40 ± 11
W + jets	740 ± 310	900 ± 400
Z + jets	140 ± 50	100 ± 40
VV	48 ± 25	70 ± 40
other Higgs	6 ± 5	5.3 ± 2.9
Rare top	0.08 ± 0.04	3.3 ± 1.7
Fakes	1700 ± 500	1600 ± 500
Total	$36\ 000 \pm 5000$	$60\ 000 \pm 8000$
Data	35 869	65 002

post-fit

	SR	CR(tt+>1b)
tH	400 ± 400	70 ± 70
tWH	21 ± 21	80 ± 80
<i>tt</i> +>1b	8000 ± 1100	$25\ 600\ \pm 1900$
tt + > 1c	3800 ± 1500	10100 ± 3300
<i>tt</i> + light	$18\ 600\ \pm\ 1100$	$23\ 400\ \pm\ 2100$
ttH	120 ± 16	683 ± 38
tt + Z	68 ± 9	340 ± 40
tt + W	20.1 ± 2.9	134 ± 19
tZq	69 ± 6	20.5 ± 1.9
tWZ	0.20 ± 0.11	0.9 ± 0.5
Wt channel	980 ± 250	1600 ± 500
t channel	1060 ± 170	350 ± 120
s channel	42 ± 7	40 ± 11
W + jets	740 ± 300	890 ± 350
Z + jets	140 ± 50	100 ± 40
VV	$47 \qquad \pm 24$	70 ± 40
other Higgs	6 ± 4	5.3 ± 2.9
Rare top	0.08 ± 0.04	3.3 ± 1.7
Fakes	1700 ± 500	1500 ± 500
Total	$35\ 870\ \pm 220$	$65\ 000\ \pm 400$
Data	35 869	65 002

33

Data/MC comparison

Pulls comparison

- **Red** and **blue** have to be exactly the same as the only difference between the two is in the fact that we look at the actual value of the signal strength
- Comparison between black and red instead was already shown during unblinding closure

Results: SM tH(bb)

tH(H $\rightarrow\gamma\gamma$) ATLAS: upper limit of 12 times the SM tH(H \rightarrow bb) CMS (36/fb): upper limit of 25 to 12 times the SM tH(H $\rightarrow\gamma\gamma$) CMS: upper limit of 14 times the SM

Combination results: SM tH

Channel	Expected Significance	Observed Significance
2LSS	0.21	2.25
3L	0.14	1.04
1L	0.14	0.98
Combined	0.28	2.78

- Current result use tHq 4FS (60fb) and tWH 5FS DR1(20fb) xsec from MadGraph
- YR values tHq 5FS (74fb) and tWH 5FS DR2 (15fb)
- Will switch to YR to compare to CMS other ATLAS results

Combination results: SM tH

Conclusion

The measurement of the cross section of the associated production of a single to quark to a Higgs boson (tH) is presented. The measurement is based on $\sqrt{s} = 13$ TeV proton–proton collision data with an integrated luminosity of 140 fb⁻¹, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The signal regions are split into final states with one, two same-sign or three isolated leptons (electrons or muons). Additional background-enriched regions are used in the fit to improve the modelling of several leading backgrounds. The tH signal strength is found to be $\mu_{tH} = 7.9 \pm 2.6$ (stat.) ± 1.9 (syst.), which is consistent with the previous measurement from CMS and other analyses probing the top-Higgs Yukawa coupling. The main source of uncertainty for the this measurement is the one associated with the data available, therefore a better limit can be achieved analysing a larger sample. Despite the analysis being optimised to set the best tH limit under the SM hypothesis, it was possible to also test the inverted Yukawa coupling hypothesis ($y_t = -1$). The signal strenght value in this case is found to be μ_{tH} ($y_t = -1$) = 1.22 ± 0.42 (stat.) ± 0.50 (syst.).

Thank you very much for your attention

BackUp Slides

Useful Links

- HTop tH to bb and multilep
- tHbb unblinded results
- Unblinding of the ML(0 tau) channels
- tH analysis: lessons learnt and plans for Run 3
- Studies on EB open points

Asimov Fit — Limits and Ranking Plot

ATLAS Internal

- * Mostly $t\bar{t}$ modelling systematics are high-ranked
 - * Large statistics and big fluctuations
- * The MC Statistics in the last bin of SR also high-ranked
 - * Last bin is where tH purity is highest low background stats expected
- * Upper limit at 95% CL stands at $\mu = 12.4$
- * Uncertainty on $\mu \sim \pm 6$

Inverted Coupling(ITC)

tH (ITC) combination: Unblinded

tH(bb): fakes estimation study

Fake efficiencies for electrons (left) and muons (right). Binned in lepton p_T (top) and $|\eta|$ (bottom)

Real efficiencies for electrons (left) and muons (right). Binned in lepton p_T (top) and $|\eta|$ (bottom)

2L efficiency map (Efficiency2D_PLV.root)

