Directed flow v_1 of deuterons in Xe+CsI collisions at 3.8A GeV

Irina Zhavoronkova (JINR, MEPhI) Mikhail Mamaev (JINR, INR RAS, MEPhI) Arkady Taranenko (MEPhI, JINR) Peter Parfenov (JINR, MEPhI) Valerii Troshin(JINR, MEPhI) Alexandr Demanov (MEPhI)

The work was funded by the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental and applied research at the NICA (JINR) megascience experimental complex" FSWU-2025-0014

BM@N Plenary Meeting, 13/02/2025

Anisotropic flow

Spatial asymmetry of the initial state matter transforms into momentum anisotropy of the produced particles

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} (1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_r)))$$
$$v_n = \langle \cos(n(\phi - \Psi_r)) \rangle$$

Coefficients v_n quantify anisotropic transverse flow of particles

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

The BM@N Setup: Xe+CsI 3.8A Gev

Event and track selection criteria

Event selection criteria:

Physical runs Central collision trigger CCT2 at least 2 tracks in vertex $Vtx_R < 1 \text{ cm}$ $Vtx_7 < 0.1 \text{ cm}$

Track selection criteria:

Outside the FHCal acceptance

 $N_{hits} > 5$ $\chi 2 < 5$ DCA < 5 cm

Particle Identification

Deuteron identification criteria

 $N-\sigma$ distributions for deuteron candidates Solid lines represent the selection criteria for different p/q ranges.

m²-distribution in narrow p/q ranges

m^2 -distribution in p_{τ} -y windows

m² particle distribution in p_{τ} and y bins in the TOF700

Particle Identification

m² versus p/q distribution of the selected deuteron candidates

Deuteron p_T -y acceptance

Flow vectors

A unit u_{nk} vector is defined in the transverse plane for each particle k

 $u_{n,k} = e^{in\phi_k}$

Event flow vector Q_n - an estimate of the reaction plane

$$Q_n = \frac{\sum_{k=1}^{M} w_k u_{n,k}}{\sum_{k=1}^{M} w_k} = |Q_n| e^{in\Psi_n^E}$$

 Ψ_n^E - n-th harmonic event plane angle, *M* - multiplicity of particles in the group.

Resolution

Scalar product method

$$v_1=rac{\langle u_1Q_1^{F1}
angle}{R_1^{F1}}$$

The resolution correction factor R_n

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Using three groups of particles and the pairwise correlations of Q_n , R_n reads

$$egin{aligned} R_1^{F2(F1,F3)} &= rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}} \ R_1^{F2\{Tp\}(F1,F3)} &= \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F1}
angle}} \end{aligned}$$

Symmetry plane resolution as a function of centrality

Different estimations of R_1 are in reasonable agreement for all three symmetry planes.

 v_1 for deuterons from the TOF400 and TOF700

v₁ for deuterons identified separately with TOF400 and TOF700 are in a good agreement


```
v<sub>1</sub>: effect of applying efficiency correction
```


Systematics due to tracking and secondary particles

Systematics due to run-by-run variations

Systematics due to contamination from other particle species

Systematics due to symmetry plane estimation (non-flow)

The systematics for combined (F2+F3) planes is below 2%

Total systematics estimation

N _{hits}	Chi2/N DF	DCA	Vtx	runld	centrality	non-flow	Identification	total
3%	2%	1%	3%	4%	5 %	2 %	5%	9%

v_1 of protons and deuterons as a function of y and p_T

v_{1} of protons and deuterons as a function of \boldsymbol{p}_{T}

Scaled v_1 of protons and deuterons as a function of scaled p_T/A

The slope of v_1 of deuterons at midrapidity as a function of collision energy

Directed flow slope of deuterons at midrapidity dv_1/dy is found to be in a good agreement with existing world data.

The slope of v_1 of deuterons at midrapidity $dv_1/dy_{cm} | y_{cm} = 0$ as a function of collision energy.

Summary

- v₁ of deuterons was measured differentially as a function of transverse momentum, rapidity and centrality
- The systematic uncertainty due to track quality, secondaries contamination, contamination from different particle species and run-by-run variations were estimated. The total systematic uncertainty was found to be bellow 9%
- The directed flow v₁ of protons and deuterons was studied for mass-number scaling. v₁ for protons and deuterons follow the scaling
- The directed flow slope at midrapidity $dv_1/dy|_{y=0}$ was extracted. Value for $dv_1/dy|_{y=0}$ is found to be in agreement with the world data

Backup

Particle Identification

m2 particle distribution in p_{τ} and y bins in the TOF700

STAR data: v_1 of protons and deuterons as a function of p_T

STAR data: scaled v_1/A of protons and deuterons as a function of scaled p_T/A

v_1 of protons and deuterons as a function of y and p_T

centrality 10-30% - for the BM@N data centrality 5-40% - for STAR

Systematics due to vertex position

