

The progress of ECal production in China

Yi Wang
Department of Engineering Physics, Tsinghua University

CONTENTS

1	MPD-ECAL introduction								
2	ECal module production								
3	PCB production and batch test								
4	Development of 5D ECal								
5	Summary								

MPD-ECal production

| MPD-ECal requirements:

particle occupancy : < 5%

Time resolution : <1ns

Energy resolution : < 5%

@1GeV

Operate in the magnetic FIELD:

 $1 \sim 0.5 T$

Adequate space resolution.

MPD-ECal

The Barrel of ECal

The ECal-MPD

1 Barrel

50 Half-sector

300 8-Zone module

2400 Module

38400 Tower

ECal module and PCB production in China

ECal module:

Construction of 8 sectors. 768 modules in total.

Institutes: Tsinghua University 60%

Shandong University 20%

Fudan University 10%

University of South China 10%

Huzhou University

> ECal PCB:

Production of 1200 PCBs (without SiPMs).

Modules production in China

In the first stage, 8 sectors have been produced in China

8 sectors=16 half sectors=768 modules=12288 towers

Modules produced in each institutes

	1	2	3	4	5	6	7	8	Total	Progress
THU	19	19		38	96	96	96	96	460	Finished
SDU			96	58					154	Finished
FDU		77							77	Finished
USC	77								77	Finished

Mass production in China

Cosmic ray test

- A special dark room for test.
- The auto-triggering of DT5742 is used.

 ADC integrals are calculated from waveform (Fig. 2) of selected events. Peaks are extracted from distribution of integrals.

Cosmic Test of 217 Modules from China

Cosmic test in JINR

PCBs production in China

	T123	T4	T5	T6	T7	T8	Total	Production	Test	Shipment
THU	450	150	150	150	150	150	1200	Finished	Finished	Finished

Batch test of ECal PCBs

> The performance of PCBs is very consistent

1200 boards, 19200 channels

Development of of 5D ECAL

Specfications of 5D Ecal prototype

Transverse size, mm ²	40×40
Number of layers	216
Thickness of scintillator, mm	1.5
Thickness of lead absorber, mm	0.3
Moliere radius, mm	62
Number of radiation length, X0	11.8
Number of WLS fibers	16
Shading material	Aluminum ally tubes internal: φ1.3mm external: φ1.5mm

- 216 layers are separated into 4 parts,
 each part consists of 54 layers
- Readout with 16 WLSFs, each part is readout with 4 WLSFs+SiPM
- Mask technology of WLSF
- 5D: x,y,z, energy (~5%), time (~100ps)
- 1) It can obtain the thickness distribution of energy deposition
- 2) Good timing can improve the PID, especially for neutron

Performance of prototype (Cosmic test)

Performance of prototype (Cosmic test)

Performance of prototype (Cosmic test)

After Slewing

Time resolution $\sigma_t = 179.8 \ ps$

Beam test of prototype at CSR@IMP

Performance of prototype (Beam Test)

- Select the events with larger signals (>270mV)
- Corresponding to $Nph_{total} > 3000$

Performance of prototype (gamma-neutron PID)

- Geant4 simulation result of gamma (400-600 MeV) and neutron (1.5-2.5 GeV)
- Select the events that the energy deposition in scintillator are 100-150 MeV
- The values of three axes represent the proportion of energy deposition in Segment 1, Segment 2, and Segment 3. seg4 = 1 (seg1 + seg2 + seg3)

Performance of prototype (gamma-neutron PID)

• The energy deposition of neutrons is concentrated within a single segment

$$(seg1 = 0, seg2 = 0, seg3 = 0, seg4 = 1 - (seg1 + seg2 + seg3) = 0).$$

• The majority of gamma events cluster near the plane defined by seg1 + seg2 + seg3 = 1 and the line seg1 + seg2 = 1 (where seg3 = 0).

Performance of prototype (gamma-neutron PID)

- Neutron: seg1 > threshold, or seg2 > threshold, or seg3 > threshold, or seg4 > 0.3
- Alpha Error: a gamma event is mistakenly labeled as a neutron event
- Beta Error: a neutron event is mistakenly labeled as a gamma event
- When threshold = 0.85, $\alpha = 5\%$, $\beta = 23\%$

Prototype response to neutron (Beam test)

Prototype response to neutron (Beam test)

- Signals of different SiPMs are presented with different colors.
- SiPM1 response to energy deposition in seg2, seg3, and seg4.
- Event that energy deposited only in 1 segment and TR=0 is considered as a neutron event.
- The analysis of neutron events is in progress.

4 events that energy deposited only in 1 segment

Summary

- ECal design and production is a key project for China-NICA cooperation
- The energy resolution of Ecal module < 5%</p>

Position resolution <5mm

Time resolution <200ps

- ► 800 Modules have been produced and delivered to JINR
- > 1200 FEE PCBs have been delivered to JINR
- The new 5D Ecal system can improve PID capability (especially for γ and n) greatly