System Size/Rapidity Scan - MPD

Arkadiy Taranenko (NRNU MEPhl, JINR)

15th MPD Collaboration Meeting 15-17 Apriil 2025, JINR

Relativistic Heavy-Ion Collisions and QCD Phase Diagram

Smooth transition from hadronic degrees of freedom to quark-gluon degrees of freedom at zero baryonic density

Relativistic Heavy Ion Collision Experiments

Method	$\mu_c \; ({ m MeV})$	$T_c \; ({ m MeV})$
Holography + Bayesian	560 - 625	101 - 108
FRG/DSE	495 - 654	108 - 119
Lee-Yang edge singularities	500 - 600	100 - 105
Lattice QCD	$\mu_c/T_c > 3$	F. Karsch et al.
Summary	495 - 654	100 - 119

 $(\mu_{c,} T_{c}) = (495 - 654, 100 - 119) \text{ MeV}$ 3.5 < $\sqrt{s_{NN}} < 4.9 \text{ GeV}$

MPD competitors:

Present:

RHIC/STAR (USA) 3-200 GeV SPS/NA61 (CERN) 5.1-17.3 GeV

Future:

HIAF/CEE (China) 2.1-4.5 GeV (2026-?) FAIR/CBM (Germany) 2.4-4.9 GeV (2029-?) JPARC-HI (Japan) 2-5 GeV (2030-?)

> BM@N: $\sqrt{s_{NN}} = 2.3 - 3.3 \text{ GeV}$ MPD: $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}$

BM@N and MPD are both in the collision energy range of the predicted CEP location.

Dense Nuclear Matter

Relativistic heavy-ion collisions provide a unique and controlled experimental way to study the properties of nuclear matter at high baryon density.

Equation of state (EoS) for high baryon density matter

EOS describes the relation between density (n_B), pressure (P), temperature (T), energy (E), and isospin asymmetry (n_p - n_n)/ n_B

Hyperon and Hyper-Nuclei Production in Heavy-Ion Collisions and Neutron Stars

Hyperon and Hyper-Nuclei production provide access to the hyperon–nucleon interactions: NY, YNN, : key to understand the EoS at high baryon density and inner structure of neutron star.

Mass-Radius relation is "unique" to the underlying EoS Soft EoS: low maximum mass and small radii Stiff EoS: high maximum mass and large radii

Beam Energy Scan programs

STAR at RHIC: $3 < \sqrt{s_{NN}} < 200 \text{ GeV} (750 < \mu_B < 25 \text{ MeV})$ NA61SINE at SPS: $5.1 < \sqrt{s_{NN}} < 17 (27) \text{ GeV}$

beam momentum (A GeV/c)

7

System size dependence of K/π and T

- (Rapid) changes of observables when moving from small (p+p, Be+Be) to intermediate and large (Ar+Sc, Xe+La, Pb+Pb) systems
- None of the models can fully reproduce the system size dependence of K^+/π^+ and T

 $(p+p \approx Be+Be) \leq Ar+Sc \leq (Xe+La \approx Pb+Pb)$

2

Pb+Pb Pb+Pb

EPOS

WNM

Pb+Pt

 $\langle W \rangle$

Xe+La

 10^{2}

 $\langle W \rangle$

 10^{2}

N: Event-by-event multiplicity $\delta N = N - \langle N \rangle$

Cumulants

$$\Box C_{1} = \langle N \rangle$$

$$\Box C_{2} = \langle \delta N^{2} \rangle$$

$$\Box C_{3} = \langle \delta N^{3} \rangle$$

$$\Box C_{4} = \langle \delta N^{4} \rangle - 3 \langle \delta N^{2} \rangle^{2}$$

Factorial Cumulants

$$\Box \kappa_{1} = C_{1}$$

$$\Box \kappa_{2} = -C_{1} + C_{2}$$

$$\Box \kappa_{3} = 2C_{1} - 3C_{2} + C_{3}$$

$$\Box \kappa_{4} = -6C_{1} + 11C_{2} - 6C_{3} + C_{4}$$

Non-monotonic energy dependence of C_4/C_2 for the conserved baryon number (using protons as a proxy) indicates the existence of a critical region.^[1]

Net-proton higher order cumulants

- Precision measurements from STAR BES-II
- Final results for collider energies $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV and FXT energies $\sqrt{s_{NN}}$ = 3.2, 3.5 and 3.9 GeV

0-5% Au+Au Collisions at RHIC

 In 3.2 - 3.9 GeV, C₄/C₂ is consistent with values from UrQMD

- Deviations seen at higher energies
- Analysis of 4.5 GeV and 2 billion events from Run21 3 GeV are ongoing

Talk by Zachary Sweger, Wed, P35

STAR

Bridge experimental data to LQCD calculations

Experiment

Static	Dynamic	
Coordinate space	Momentum space	
Net-baryon	Net-proton	
Fixed V	Fluctuating V	

- **1.** Long-range phenomena near critical point: increasing the measurement window in y and p_T magnifies the contribution to normalized cumulants;
- 2. For small rapidity window $\Delta y \ll \Delta y_{corr}$, and near the critical point, we expect $\kappa_n \sim (\Delta y)^{n_{[2]}}$;
- 3. The wide and uniform acceptance of the detector provides us with the opportunity to conduct kinematic scan.

[1]M.A.Stephanov: Phys.Rev.Lett. 107(2011),052301 [2]R.V.Ravai and S. Gupta: Phys.Lett.B 696(2011),459-463 [3]S.Ejiri, F.Karsch, K.Redlich: Phys.Lett.B 633(2006),275-282 [4]A.Bazavov, et al.: Phys.Rev.Lett. 109(2012),192302 [5]A.Borsanyi, et al.: Phys.Rev.Lett. 111(2013),062005

[1]

12

Rapidity scan of higher order cumulants

Widening y, p_T windows of measurement enhances potential critical contributions

Deviation from UrQMD increases with y acceptance and near 20 GeV

Poster by Yongcong Xu, #821 Poster by Xin Zhang #902

Sooraj Radhakrishnan

Talk by Yige Huang, Wed, P30

STAR

Proton Factorial Cumulant Ratios: Rapidity Scan

• Smaller exponents than expected power-law $\kappa_n/\kappa_1 \sim (\Delta y)^{n-1}$ are observed.

Rapidity Acceptance Dependence \geq

Ø @

0 00

÷.

Central 0-5

0.5

0

Y. Xu, X. Zhang, QM 2025 posters

Event-by-event fluctuations: Big picture

Experimental challenges:

- Detection efficiency correction: Unfolding, binomial
- Event pileup: Statistical approach
- Particle identification: Fuzzy logic vs cut based particle identification
- Volume fluctuation correction (VFC): Mixed event, centrality bin width correction (CBWC)

How to interpret: "Establishing a non-critical Baseline"

- Critical fluctuations & Critical End Point (CEP) at < 5 GeV</p>
- Global/local charge conservation
- Contribution from different hadronisation mechanisms
- Annihilation, excluded volume, resonances, hydrodynamic evolution ...

Anisotropic Flow at RHIC-LHC

Initial eccentricity (and its attendant fluctuations) ϵ_n drive momentum anisotropy v_n with specific viscous modulation

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

Anisotropic flow in heavy-ion collisions at high baryon density

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone ($t_{exp} = R/c_s$, $c_s = c\sqrt{dp/d\varepsilon}$) and
- II. The passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

courtesy of R.A. Lacey

Anisotropic Flow – Expected Shapes

0.25

0.50

0.25

0.75

0.50

(N_{qpp})^{-1/3}

0.75

0.25

0.50

0.75

19

Directed flow of protons and EOS of symmetric matter

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Both STAR and BM@N results for directed flow prefer stiff EOS

Directed and elliptic flows of and EOS of symmetric matter

Anisotropic flow in Au+Au collisions at Nuclotron-NICA energies

Particles 6 (2023) 2, 622-637

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone ($t_{exp} = R/c_s$, $c_s = c\sqrt{dp/d\varepsilon}$) and
- II. The passage time for removal of the shadowing by spectators ($t_{pass} = 2R/\gamma_{CM}\beta_{CM}$)

Elliptic flow: transition from out-of-plane to in-plane: geometry

P. Parfenov, Particles 5 (2022) 4, 561-579 A.T Czech.J.Phys. 50S4 (2000) 139-160

Rapidity dependence of v2 and EOS

1.0

HM – stiff momentum dependent with K=376 MeV

SM-soft momentum dependent with K=200 MeV

~ ~

Au+Au 1.2A GeV 0.25<box 0.45 protons 0.8 0.8 0.6 0.6 0.08 0.4 0.4 HM 🗆 HM 0.2 Au+Au ▲ SM Au+Au ▲ SM 0.2 FOPI 3He tritons FOPI v_{2n}(0.8) 0.04 0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4 1.6 0.30 0.25 0.6 0.00 IQMD-HM IQMD-HM 0.20 ∆ IQMD-SM IQMD-SM 0.4 FOPI 0.15 -0.04 -0.5 0.0 0.5 -0.5 0.0 0.5 0.10 0.2 HM HM y₀ y_o Au+Au ▲ SM Au+Au 0.05 ▲ SM protons FOPI deuterons FOPI V2n=|V20|+|V22| 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.4 0.6 0.8 1.0 1.2 1.4 1.6 beam energy (A GeV) Fit: V2(y0)=V20+V22*Y0^2

Large rapidity coverage is important for flow measurements: MPD forward upgrade

FOPI data : Nucl. Phys. A 876 (2012) 1 IQMD : Nucl Phys. A 945 (2016)

0.25<b_<0.45 u_>0.4

1.2

1.0

u_{t0} scaling: FOPI/STAR data

STAR published results for protons : Scaling breaks at $\sqrt{s_{NN}}$ =3GeV – but holds at forward rapidity?

Constraining neutron-star matter with microscopic and macroscopic collisions

Huth, Pang et al. Nature 606(22)276

Astrophysical observations narrow constraints above $2 n_{sat}$

Rapidity Scan with MPD at NICA

Rapidity dependence of cumulant observables can enhance the prospect of discovering a CEP

J.Li, L.Du and S.Shi, Rapidity scan approach for net-baryon cumulants'' Phys. Rev. C 109, no.3, 034906 (2024) J. Brewer et al., Phys. Rev. C 98, 061901 (2018)

Rapidity-dependent yields offers an extra method explore the EoS at finite chemical potentials.

L.Du, Bulk medium properties of heavy-ion collisions from the beam ene scan with a multistage hydrodynamic model," Phys. Rev. C 110 (2024) no.1, 014904

Thermodynamic properties, especially the baryon chemical potential (μ_B) , undergo significant variations across rapidity,

L.Du, H.Gao, S.Jeon and C.Gale, Rapidity scan with multistage hydrodynamic model, Phys. Rev. C 109, no.1, 014907 (2024)

Rapidity dependence of anisotropic flow provides provides sensitivity to (T,μ_B) dependence of specific shear (η/s) and bulk (ζ/s) viscosities

S.A.Jahan, H.Roch and C.Shen, Bayesian analysis of (3+1)D relativistic nuclear dynamics with the RHIC data, Phys.Rev.C 110 (2024) 5, 054905

Backup slides