

PWG1 Summary

PWG1 conveners: <u>Petr Parfenov</u> (JINR, NRNU MEPhI), Grigory Feofilov (SPbSU)

With big help from Andrey Moshkin (VBLHEP JINR) and Dmitry Podgainy (MLIT JINR)

XV MPD Collaboration Meeting, Dubna, Russia, 15-17 April 2025

PWG1 activity

There were 5 reports at MPD Cross-PWG since the previous meeting:

- 1. <u>V. Kovalenko</u>, *Global observables in simulated data for BiBi*@9.2 GeV, **12 Nov 2024**
- 2. <u>V. Riabov</u>, Centrality and PID wagons for the MPD-FXT (Req35) productions, **21 Jan 2025**
- 3. <u>V. Uzhinsky</u>, Approbation of DCM and AGT Models, **4 Feb 2025**
- 4. <u>P. Parfenov</u>, An issue with mean-field mode of UrQMD at the lab frame and how to generate UrQMD data for the MPD-FXT, **4 Feb 2025**
- 5. <u>D. Idrisov</u>, Bayesian approach for centrality in MPD-FXT, 8 Apr 2025

Global observables (MPD-CLD): η vs V₇

See V. Kovalenko's talk

 η distribution can be measured in extended range using events with displaced vertex position (V₂) together with efficiency and contamination maps

Approbation of DCM and AGT models

See V. Uzhinsky's talk

In pp collisions:

- Both AGT and DCM are consistent with other models and data for pions
- DCM overestimates kaon spectra at higher energies

In Ar+Sc collisions:

- Both AGT and DCM are overall consistent with other models and data for pions
- All models struggle with kaon spectra

Coupling of UrQMD and AAMCC models

MCini file

See P. Parfenov's talk

UrQMD:

- Version 3.4
- Cascade mode in this work
- Offset radius 5 fm
- Evolution time 100 fm/c
- Other parameters are set to default values

, MCini file

Define prefragments via MST-clustering Constant *d* = 2.7 fm Model prefragments decays

Find spectator nucleons

AMC:

• All the participant data remain intact

https://github.com/Spectator-matter-group-INR-RAS/AAMC

<u>C</u>

UrQMD-AMC allows to have mean-field mode (UrQMD) while having realistic fragmentation with (AAMCC)

 $\ensuremath{\text{UrQMD-AMC}}$ was developed and is ready for use in MPD framework

UrQMD (ver. 3.4) configuration:

- Xe+Xe, Xe+W (2M events)
- T=2.5A GeV (2.87 GeV)
- mean-field (Skyrme potential)

UrQMD-AMC configuration:

- Same UrQMD setup
- AMC (afterburner mode)
 - Excitation energy of a prefragment: hybrid density function is used based on Ericson formula and ALADIN parametrization

UrQMD-AMC vs UrQMD: main distributions

See P. Parfenov's talk

- Expected differences between UrQMD and UrQMD-AMC due to the presence of the fragments (in the latter model)
- Small overall amount of (light) nuclei in the spectator zone - comparison with different parameterizations of the excitation energy of a prefragment are needed

UrQMD-AMC allows us to have an additional mean field model with fragments for feasibility studies

An issue with mean field in the models in MPD-FXT

400

200

- Difference in the number of projectile and target protons in UrQMD MF
- UrQMD cascade shows consistent results

General recommendation for simulated/reconstructed data preparation:

Generate MF model data in the cms and perform Lorentz boost to lab system when reading model data in the MpdRoot

MPD in Fixed-Target Mode (MPD-FXT)

Model used: UrQMD mean-field

- Bi+Bi, E_{kin} =1.45 AGeV (\sqrt{s}_{NN} =2.5 GeV) Bi+Bi, E_{kin} =2.92 AGeV (\sqrt{s}_{NN} =3.0 GeV) 0
- 0
- Bi+Bi, E_{kin}^{KII} =4.65 AGeV ($\sqrt{s_{NN}}$ =3.5 GeV)
- Xe+W, E_{kin}^{M} =2.5 AGeV (\sqrt{s}_{NN}^{NN} =2.87 GeV) Xe+Xe, $E_{kin}^{}$ =2.5 AGeV ($\sqrt{s}_{NN}^{}$ =2.87 GeV)
- Point-like target:
 - Bi+Bi: z = -115 cm Ο
 - Xe+W. Xe+Xe: z = -85 cm 0
- **GEANT4** transport
- Multiplicity-based centrality determination

Centrality wagon in <u>MpdRoot framework</u>

<u>Simplified scripts</u> to get input for the wagon provided by V. Kireyeu

Centrality Framework software

Trigger efficiency for Xe+W at $E_{kin} = 2.5A \text{ GeV}$

Xe+W, DCM-QGSM-SMM, 1M events

FFD trigger efficiency vs. impact parameter Trig.eff. >=1 channels >=2 channels >=3 channels >=4 channels 0.2 10 12 b (fm) 88%, 83%, 78%, 73% FFD: FHCAL: 96%, 95%, 94%, 91% TOF: 97%, 94%, 92%, 89%

See V. Riabov's talk

- Similar to what we did for BiBi@9.2, select FHCAL (≥1 module) as a reference -> 96%
- Event z-vertex is fixed no need to worry about vertex dependence of trigger efficiency

14

Centrality determination in MPD-FXT: evCentrality & MC-Glauber

We need to have models with realistic nuclei parameterization (Woods-Saxon): JAM, SMASH, PHSD, PHQMD, etc.

Bayesian approach for centrality in MPD-FXT

Both 1D and 2D bayesian inversion techniques can be employed for centrality determination

We can suppress auto-correlation effects by using energy from EMC (with specific selection) it is important for fluctuation studies (cumulants of net-proton, kaons, etc.)

The BM@N experiment

Simulation:

- DCM-QGSM-SMM, Xe-Cs
- GEANT4 transport

<u>Data</u>:

- Run8 Xe-CsI @3.8A GeV
- Event selection :
 - Physical runs
 - Centrality trigger (CCT2)
 - More than 1 track in vertex reconstruction
 - \circ Vtx_R < 1.0 cm
 - \circ Vtx_z < 0.1 cm

Multiplicity of charged particles from tracking system FSD+GEM **Can be used to test our analysis techniques on the real data**

Multiplicity corrections

One of the main corrections to consider:

 <u>Shift correction (run-by-run):</u> f(refMult) = A*Erf(-σ*(refMult-h)) + A refMult can then be corrected by: refMultCorr = refMult * h_{ref} / f(RunId)

<u>Empty target events:</u> Events with collisions outside of the target (Xe+C instead of Xe+Cs(I)) can be subtracted from N_{ch} distribution

Together with pile-up rejection we can have more robust centrality

Pile-up rejection and centrality determination

Changes in fit results:

- f: 0.5 -> 0.4
- k: 0.25 -> 0.28
- µ: 0.44 -> 0.42
- pileup: 5.5% -> 0.3%

After pileup rejection the "pileup" events contribution is less than 1% (f,k, μ) parameters are overall consistent

Centrality determination in the BM@N experiment

Both approaches (based on MC-Glauber and inverse Bayes theorem) reproduce experimental data well

Summary

- Global observables: wide spread of V_z can be used to extend rapidity coverage additional corrections (trigger & tracking efficiencies as a function of V_z, etc.)
- Model studies:
 - Study and comparison of different models are important to improve model parameters, chart appropriate models for MPD-FXT and MPD-CLD feasibility studies
 - UrQMD-AMC and UrQMD-SMM give us an additional models with mean field and fragments
 - Provided recommendations for mean field models in the simulation/reconstruction procedures at MPD-FXT
 - We need more mean-field models with realistic nuclei initialization (JAM, SMASH, PHSD, PHQMD, etc.)

• Feasibility studies at MPD-FXT:

- New productions (prod. 35 & 36) are ready for use
- Trigger efficiencies were estimated using FFD, FHCal, TOF (~90%)
- Discrepancy in the trigger efficiency estimation from the MC-Glauber-based centrality procedure is due to different nuclei initialization: UrQMD MF uses "hard sphere", MC-Glauber uses Woods-Saxon
- E_{EMC} and E_{FHCal} were used for centrality determination using Bayesian inversion method: E_{EMC} is a promising observable that might help to suppress auto-correlation effects important for some analyses (high-order cumulants of net-protons, kaons, etc.)
- Latest xenon run at BM@N allows us to test analysis techniques with real experimental data:
 - Centrality determination procedures based on MC-Glauber and Bayes inversion were tested together with all necessary corrections (shift run-by-run correction, pile-up rejection, empty target subtraction, etc.)

Thank you for your attention!

Backup

UrQMD with mean field mode

24	1	initialization mode	
	0	hard sphere (used for $EOS \neq 0$)	
	1 Woods-Saxon (used for CASCADE mode)		
	2	Fast Woods-Saxon (used for CASCADE mode)	
In input.f:			*snapshot from the UrQMD User Guide
717 if (eos.ne.0) then 718 CTOption(24)=0 719 endif		ue.0) then .on(24)=0	When Skyrme potential is used (EOS = 1), UrQMD essentially locks nuclei initialization to the hard sphere which is not realistic.

In the future studies we need to have MF model with realistic nuclear matter parametrization (based on Woods-Saxon potential): SMASH, PHSD, PHQMD, etc.

50

100

P_{lab} (GeV/c)¹⁵⁰

10

ୁ ସୁଦ୍ଦୁର/[p²dpdΩ](mb C ପ > Fragmentation model for forward/backward spectator region **UrQMD+SMM** satisfy such requirements:

- UrQMD describes well spectra of $(\pi^{\pm}, K^{-}, p, \bar{p}), v_{n}$ of protons, etc.
- SMM provides realistic fragmentation

See T.Q.T. Le talk at the MPD Cross-PWG Meeting (09.07.2024)

- Use MC Glauber for centrality determination
- The MC Glauber non-realistic **N**_{part} simulations at low energies
- Differences in of number of participant nucleons (**N**_{part}) distributions from UrQMD and MC
- The impact parameter (b) model independent centrality estimator

The Bayesian inversion method (Γ-fit): multiplicity

Relation between multiplicity M and impact parameter b is defined by

the fluctuation kernel:

$$P(M \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} M^{k(c_b)-1} e^{-M/\theta}$$

 $\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta}$ $\langle M \rangle, D(M) - \text{mean and variance of multiplicity after reconstruction}$

 $c_b = \int_0^b P(b')db'$ – centrality based on impact parameter

Mean multiplicity as a function of c_{b} can be defined as follows:

 $\langle M \rangle = m_1 \cdot \langle M' \rangle$

 $D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$

 $\begin{array}{l} \left\langle M \, '\!(c_b) \right\rangle & \text{- mean and variance} \\ \text{of multiplicity from} \\ D(M \, '\!(c_b)) & \text{the model} \end{array}$

Fit function for N_{ch} distribution: b-distribution for a given N_{ch} range:

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b \quad P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

See D. Idrisov's talk

The Bayesian inversion method (Γ -fit): $E_{EMC} \& E_{FHCal}$

Relation between $E_{EMC} \& E_{FHCal}$ and impact parameter b is defined by the fluctuation kernel:

See D. Idrisov's talk

 $P(E, E_F | c_b) = G_{2D}(E, E_F, \langle E \rangle, \langle E_F \rangle, D(E), D(E_F), R) \qquad R(E, E_F) = \frac{\varepsilon_1^2 m_1^2}{\varepsilon_2 m_2} R(E', E_F')$

 $\varepsilon_1, \varepsilon_2, m_1, m_2$

- fit parameters

 $G_{_{2D}}(\dots)$ - 2D Gamma function (2 Γ -functions with rotation)

 $c_b = \int_{0}^{b} P(b')db'$ – centrality based on impact parameter

- $\langle E \rangle$, D(E) average value and variance of energy in EMC
- $\langle E_F \rangle$, $D(E_F)$ average value and variance of energy in FHCal
 - $R(E, E_F)$ Pirson correlation coefficient

E' - E_{EMC} and/or E_{FHCal} in the model E - E_{EMC} and/or E_{FHCal} after reconstruction $\langle E \rangle = \varepsilon_1 \langle E'(c_b) \rangle, \quad D(E) = \varepsilon_2 D(E'(c_b))$ $\langle E_F \rangle = m_1 \langle E_F'(c_b) \rangle, \quad D(E_F) = m_2 D(E_F'(c_b))$

 $\langle E'(c_b) \rangle$, $D(E'(c_b))$ - can be approximated by exponential (or any smooth) function

Centrality determination after refMult correction (7310-7500)

Example, multiplicity [49;71):

- corresponding 30-40% for Run 8150-8170
- corresponding 20-30% for Run 7310-7500

We suggest using the "shift" correction