

Nuclotron based Ion Colider fAcility

MPD Collaboration Status

V. Riabov for the MPD Collaboration

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research, Dubna;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; SSI "Joint Institute for Energy and Nuclear Research – Sosny" of the National Academy of Sciences of Belarus, Minsk, Belarus University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa. Mexico: Universidad de Colima, Mexico; Universidad de Sonora. Mexico: Universidad Michoacana de San Nicolás de Hidalgo, Mexico Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; High School of Economics University, Moscow, **Russia**; National Research Nuclear University MEPhI , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**

MPD magnet

Magnet yoke

Cryogenic platform

Strings for cryogenic pipes and cables hold

- ✤ February: solenoid power cable thermal isolation inside of the Chimney
- ✤ Now: solenoid cooled down to the working temperature of 4.5 K, test current supply

Magnetic field mapper

Novosibirsk BINP magnetic field mapper

Single 3D Hall probe moves in 3 directions: z , R, ϕ Accuracy: 0.1 – 0.3 Gs Number of points: ~ 2.10⁵ (90 hours) Fields to measure: 0.3 – 0.57 T (5-6 points) Number of tunes per field: 5 Total time of measurements: ~ 3-4 months April: mapper delivery to JINR and installation of stationary Hall probes Summer: MF measurements at 02-0.55 T

Central barrel subsystems

Frame - ready

Carbon fiber support frame delivered and unpacked, sagita ~ 5 mm at full load, rails for the TPC and TOF are installed

ECAL

ECAL ~ 38400 towers (2400 modules) produced by Tsinghua University, Shandong University, Fudan University, South China University, Huzhou University and JINR – production in IHEP (Protvino) and Tenzor (Dubna)

45 half-sectors to be ready by August, the rest depends on WLS fiber supply from Tver

TOF - ready

All 28 (100%) TOF modules are assembled, tested, stored and ready for installation. Spare modules in production

TPC – central tracking detector

24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

TPC mechanical body assembly	June 2025
with ROCs, leak test and HV test	
TPC installation to MPD and test	Nov –Dec 2025

V. Riabov, XV-th MPD Collaboration Meeting, April - 2025

Forward subsystems

FHCAL - ready

FHCal assembled on the platform, (modules are equipped with FEE)

FFD - ready

Test installation of FHCAL → autumn 2024 Final installation → August 2025 Cherenkov modules of FFDE and FFDW, mechanics for installation in container with beam pipe are available, Long term tests with cosmic rays & laser ongoing

Beam and luminosity monitoring

Assembly of the main components of the detector for the Run on the collider beam - June 2025

MPD schedule - 2025

1	January 13 th - 30 th	Solenoid and Correction Coils Power Supplies control system tests
2	January 25 th – February 21 st	Solenoid Safety regimes of emergent energy evacuation working out Development of algorithms of cooling on base of experience with manual regime
3	February 1 st – February 27 th	Solenoid Power cable temperature isolation inside of the Chimney
4	March 3 ^d – April 7 th	Cooling down of the Solenoid to the working temperature 4K
5	April 7 th -April 30 th	Development procedure of current supplying to the Solenoid, training
6	April 20 th – 30 th	Installation stationary Hall probes (both INP Novosibirsk and Belorussia)
7	April 1 st - April 20 th	Final test of the Field Mapper at Novosibirsk
8	April 28	Delivery Mapper to the JINR
9	May 10 th – May 18 th	Installation Magnetic Field Mapper, Calibration, preparation for measurements of Field
10	May 20 th - July 30 th	Magnetic field measurements on nominals: 0.2T, 0.3T, 0.4T, 0.45T, 0.5T, 0.55T
11	June 15 th	TPC mechanical body is assembled, leak test and HV test are finished
12	August 4 th – August 22 ^d	Installation FHCal into poles
13	August 6 th – September 25 th	Ecal installation
14	August 20 th – September 30 th	Installation TOF modules (access from both sides)
15	November 1 st – December 20 th	TPC installation and test
16	June 22 ^d – November 30 th	Cabling
17	December 4 th – December 14 th	Beam pipe installation
18	December 22 ^d	Moving to the beam line
19	December 30 th	Readiness for Data taking

Starting detector commissioning in late 2025 remains the main priority

Proposal for continuation of the MPD project

JOINT INSTITUTE FOR NUCLEAR RESEARCH

The Report on Project "MPD. MultiPurpose Detector" 02-1-1065-3-2011/2025

Feasibility study of the second stage of the MPD

Theme: 02-0-1065-2007/2026

LEADER

V.M.Golovatyuk, V.D.Kekelidze, V.G.Riabov

Continuation of the MPD project

Cost estimation

Proposed sched	ule and resource re	quest for the MPI) Project
		0.4	

Expenditures, resources, funding sources		Cost (thousands	Cost/Resources, distribution by years					
		Resource requirements	1 st year	2 nd year	3 rd year	4 th year	5 th year	
	International cooperation	1000	200	200	200	200	200	
	Materials	23350	3700	5250	6500	5350	2550	
	Equipment, Third-party company services	6450	1100	1150	1850	1550	800	
	Commissioning	300	0	50	100	100	50	
	R&D contracts with other research organizations	450	100	100	100	100	50	
	Software purchasing							
	Design/construction							
	Service costs (planned in case of direct project affiliation)	1000	200	200	200	200	200	
Standard hours	Resources							
	- the amount of FTE,	625	125	125	125	125	125	
	- accelerator/installation,	13720	2200	2880	2880	2880	2880	
	- reactor,							
JINR Budget	JINR budget (budget items)	33000	5400	7050	9050	7600	3900	
Extra fudning (supplement ary	Contributions by partners Funds under contracts with customers	500	100	100	100	100	100	
	Extra fuding (supplement ary hours	Expenditures, resources, funding sources International cooperation Materials Equipment, Third-party company services Commissioning R&D contracts with other research organizations Software purchasing Design/construction Service costs (planned in case of direct project affiliation) Resources - the amount of FTE, - accelerator/installation, - reactor, INR budget (budget items) JINR budget (budget items) Funds under contracts with customers	Expenditures, resources, funding sources Cost (thousands of US dollars)/ Resource requirements International cooperation 1000 Materials 23350 Equipment, Third-party company services 6450 Commissioning 300 R&D contracts with other research organizations 450 Software purchasing	Expenditures, resources, funding sourcesCost (thousands of US dollars)/ Resource requirements138International cooperation1000200Materials233503700Equipment, Third-party company services64501100Commissioning3000R&D contracts with other research organizations450100Software purchasing0Design/construction0Service costs (planned in case of direct project affiliation)1000200executes-1000200International of FTE, - accelerator/installation,625125- accelerator/installation,137202200- reactor,Image Null sumportingJINR budget (budget items)330005400StrutesSummer Null customersFunds under contracts with customers	Cost (thousands of US dollarsy) Resource requirementsCost distributionInternational cooperation1000200200Materials2335037005250Equipment, Third-party company services645011001150Commissioning300050R&D contracts with other research organizations450100100Software purchasing100100100Design/construction200200200Service costs (planned in case of direct project affiliation)1000200200International of FTE, - accelerator/installation,625125125- accelerator/installation,1372022002880- reactor,3300054007050Image and the set of partners partnersS00100100Funds under contracts with customers500100100	Expenditures, resources, funding sourcesCost (thousands of US dollars); Resource requirementsCost/Resou distribution by yearInternational cooperation1000200200200Materials23350370052506500Equipment, Third-party company services6450110011501850Commissioning300050100R&D contracts with other research organizations450100100100Software purchasingDesign/constructionService costs (planned in case of direct project affiliation)1000200200200et accelerator/installation, - reactor,13720220028802880JINR budget (budget items)33000540070509050stringtonstrington-500100100	Cost (thousands of US dollars)/ Resource requirementsCost/Resources, distribution by years distribution by years gearInternational cooperation1000200200200200Materials233503700525065005350Equipment, Third-party company services64501100115018501550Commissioning300050100100100R&D contracts with other research organizations450100100100100Software purchasingDesign/constructionService costs (planned in case of direct project affiliation)1000200200200200Resources625125125125125	

Resources distribution by years

The main systems, resources, funding souces		Cost of the main subsystems (k\$)	Cost/Resources distributiom by years (k\$)					
			1 y. (2026)	2 y. (2027)	3 y. (2028)	4 y. (2029)	(2030	
		Time Projection Chamber upgrade (TPC)	5250	700	1200	1650	1000	700
		Upgrade of Ecal	700	200	200	100	100	100
		Upgrade of FHCal	350	100	100	50	50	50
na inhai e		Upgrade of Forward FFD	250	50	50	50	50	50
	ems	Cryogenic and Power Supply systems of Magnet	3500	1100	900	800	500	200
	n syst	Upgrade of DAQ	850	150	150	200	200	150
	mai	Infrastructure of the MPD	900	250	250	200	100	100
neski	The	Second stage detectors						
		Forward TOF	3770	420	750	1100	1100	400
		Forward Ttracker	13140	1350	2850	3650	3450	1840
		Inner Tracker (ITS)	4290	1270	1050	1200	700	70
		Total:	33000	5590	7500	9000	7250	3660
		International Cooperation	825	165	165	165	165	165

Project Leader 🧹

o readerlate V.M.Golovatyuk

Laboratory Economist

V.V.Morozov

Inner Tracking System – ITS

The ITS is the key to measuring the production of heavy-flavor hadrons

The complete structure of the 6-layer MPD-ITS detector, from a single pixel to the inner and outer cylindrical layers

- first prototype of ALPIDE-like MAPS (MICA) sensor developed at CCNU and produced in China

- FPGA-based Readout System and the Power Unit developed at USTC for reading out the

"staves" comprising of MICA sensors of IB and OB \rightarrow tests at LHEP in 2025

- first porotypes of the GBT ASICs for the fast aggregation of data and transfer via optical lines designed and manufactured \rightarrow lab tests ongoing in CCNU.

- 1) The TDR was finalized to build an ITS consisting of six cylindrical layers of MAPS (Monolithic Active Pixel Sensors) around the interaction region: 3 layers of inner barrel (IB) surrounded by 3 layers of outer barrel (OB)
- 2) An agreement was reached with Chinese partners to jointly research, develop and manufacture in China the missing components needed to build the tracker and its readout system.

6 layers in 2 barrels final conceptional design and its optimization- by 2024

 D^0 and D^+ reconstruction using information from ITS+TPC+TOF subsystems

Rapidity scan with MPD at NICA

More detailed study of the QCD phase diagram by utilizing a three-dimensional scan in collision energy, interacting system size, and particle rapidity

Motivation for Forward upgrade:

- 1. Full yields of (heavier) identified hadrons and light nuclei with non-trivial rapidity dependence due to baryon stopping, more detailed study of the "horn", the "step" effects for lighter hadrons
- 2. Two-particle correlation and multiparticle cumulant studies with wider coverage in $\Delta \eta$
- 3. Directed and elliptic flow \rightarrow tighter constraints on η/s
- 4. Search for CEP with event-by-event fluctuations of conserved charges → higher sensitivity with wider rapidity coverage
- 5. Hyperon global polarization vs rapidity → insights on the origin of the global polarization signal, tighter constraints for models
- 6. Extended forward rapidity coverage may be beneficial for diffractive studies in proton-proton collisions, such as instanton searches
- 7. Improved trigger efficiency, centrality and event plane determination

... and more

Funding

- Support program from Russian Ministry of Education and Science for NICA:
 - $\checkmark\,$ russian groups from subordinated organizations participating in NICA with signed MOUs
 - ✓ 200 MRUB (~2.2 M\$) in 2024 for all NICA activities: MPD, BM@N, SPD, ARIADNA collaborations, accelerator
 - ✓ program has been extended to 2025-2026
 - ✓ new participating institution are possible
- $\bigstar \sim 40$ MRUB for MPD per year:
 - ✓ supported organizations: MEPhI, St.Petersburg Polytechnic University, INR RAS, Belgorod National Research University, North Ossetia State University
- Problems:
 - ✓ KI, MSU, SPbSU, HSE University are excluded from the program (not subordinated organizations)
 - ✓ no funds for travel (shifts, etc.)

Conferences and workshops

✤ MPD presentations at conferences since last meeting (~ 15 talks):

- ✓ ICPPA 2024, Moscow, Russia, Oct 22-25
- ✓ Session-Conference of the Section of Nuclear Physics Branch of the Russian Academy of Sciences 2025, Russia, Feb. 17-21

✤ JINR-MEPhI organized International Workshop NICA-2024, Nov. 25-27

- ✓ joint platform for discussion of NICA physics at BM@N and MPD
- ✓ 175 participants from all over the world: Bangladesh, Brazil, Bulgaria, Check Republic, China, Cuba, Egypt, India, Kazakhstan, Mexico, Russia, Serbia, US, Uzbekistan, Vietnam
- \checkmark 22 talks in three days

Co-chairs

Arkadiy Taranenko (MEPhI, JINR) Evgeni Kolomeitsev (JINR, UMB, Banska Bystrica) Victor Riabov (PNPI, MEPHI)

Organizing commitee

Zebo Tang (USTC, China) Yi Wang (Tsinghua University, China) Shusu Shi (CCNU, China) Natalia Barbashina (MEPhI) Ivan Astapov (MEPhI) Dmitry Blau (NRC Kurchatov Institute) Serge Bondarenko (BLTP JINR) Fedor Guber (INR RAS) Vadim Kolesnikov (JINR)

Publications

Overall publication activity (SPIRES indexed)

Collaboration papers:

- I. Status and initial physics performance studies of the MPD experiment at NICA Eur.Phys.J.A 58 (2022) 7, 140 (~ 50 pages)
- II. MPD physics performance studies in Bi+Bi collisions at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$ consolidation and publication of physics feasibility studies for BiBi@9.2 GeV, 40+ pages

arXiv:2503.21117 [nucl-ex]

paper has been submitted to the journal, Revista Mexicana de Física

MPD physics program

G. Feofilov, P. Parfenov	V. Kolesnikov, Xia	nglei Zhu	K. Mikhailov, A. Taranenko			
 Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 Spectra of light properties of light flavor spectra of light flavor spectra and s	ght flavor and nuclei bectra hypernuclei yields and yield chemical the event Phase Diag.	 Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations 			
D. Peresunko, Chi Yang		Wangmei Zha, A. Zinchenko				
 Electromagnetic pr Electromagnetic calorimeter Photons in ECAL and central Low mass dilepton spectra in modification of resonances a intermediate mass region 	r obes meas. barrel n-medium and	 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 				

✤ Changes:

- ✓ PWG2: V. Kolesnikov steps down \rightarrow thanks for the service !!!
- ✓ PWG2: V. Kireev steps in as a new convener

Physics feasibility studies

- ✤ Physics feasibility studies using centralized large-scale MC productions
- ✤ Centralized Analysis Framework for access and analysis of data → Analysis Train:
 - \checkmark consistent approaches and results across collaboration, easy storage and sharing of codes
 - \checkmark reduced number of input/output operations for disks and databases, easier data storage on tapes
- Develop physics program, software and analysis infrastructure for real data analysis

QCD medium at extreme net baryon densities $\rightarrow 1^{st}$ order phase transition + CEP

✤ MPD-CLD and MPD-FXT approved start-up:

- ✓ Collider mode: two beams, $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
- ✓ Fixed-target mode: one beam + thin wire (~ 50-100 μ m) :

- extends energy range to $\sqrt{s_{_{NN}}}$ = 2.4-3.5 GeV (HADES, BM@N, CBM)

- no problem of low event rate at lower collision energies

MLIT participation in MPD

Participants from MLIT:

Aleksandr Kokorev Anastasia Anikina Andrey Dolbilov Balashov Nikita Dmirty Belyakov Dmitry Podgainy Evgeny Aleksandrov Igor Aleksandrov Igor Pelevanyuk Irina Filozova Jan Busha Jr. Maria Lubimova Maxim Zuev Natalia Gromova Oksana Streltsova Sergei Shmatov Slavomir Hnatic Tatyana Strizh Valeriy Mitsin Vladimir Korenkov Vladimir Trofimov Vladimir Uzhinsky

JINR GitLab CernVM File system Govorun Tape Archive Network Website Databases

Mescheryakov Laboratory of Information Technologes take active participation in MPD collaboration works. We are grateful for provided computing resources, development and support of IT services.

Advancements in analyses

- ✤ MPD-CLD: continued analyses of BiBi@9.2 GeV (fluctuations, dielectrons, etc...)
- ✤ MPD-FXT: new productions and new analyses
 - ✓ new centralized centrality wagon (evCentrality)
 - \checkmark new centralized track parametrizations: n-sigma matchings to DCA and outer detectors, dEdx and β PID, etc. (evPID)
 - ✓ new event-plane centralized wagon (evPlaneFXT)

NICA MPD-FXT: Identified charged $\pi/K/p$ - I

- ★ Request 36 MPD-FXT: XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- * $\pi/K/p$ identification based on n-sigma selections in the TPC/TOF \rightarrow good for the first-day measurements

Best possible coverage at low- $p_T \rightarrow$ ideal for dN/dy and $\langle p_T \rangle$ Sampled p_T range accounts for > 95% (π^{\pm} , K⁺, p) and > 85% (K⁻) of the total yield

NICA MPD-FXT: Identified charged $\pi/K/p$ - II

- ♦ Request 36 MPD-FXT: XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- * $\pi/K/p$ identification based on Bayesian probability in the TPC&TOF combined

- Better coverage at higher momenta, low-p_T coverage is limited due to TOF-matching requirement
- ✤ Good for advanced study of spectra shapes, radial flow, differential particle ratios (B/M, etc.)
- ★ Contamination corrections may be quite significant → require systematic study

MPD-FXT: Λ hyperon

- ✤ Request 36 MPD-FXT: XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- * Λ identification based on topological selections

✤ Good agreement between generated and reconstructed signals

NICA MPD-FXT: v_1 for charged π and protons

- ★ Request 36 MPD-FXT: XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- New: realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity

Some remaining discrepancies to be resolved

MPD-FXT: v_2 for charged π and protons

- ★ Request 36 MPD-FXT: XeW@ T=2.5 AGeV (UrQMD), 15 M events → full event/detector reconstruction
- New: realistic PID (TPC+TOF); efficiency corrections; centrality by TPC multiplicity

Reconstructed and generated signals mostly agree Some remaining discrepancies to be resolved

- Preparation of the MPD detector and experimental program is continued, start of MPD commissioning in late 2025 remains the main priority
- "Proposal for continuation of the MPD project" has been approved for the next five years
- Develop physics program, software and analysis infrastructure for real data analysis

BACKUP

Forward spectrometers – tracking

Two volumes (green and magenta) available for the installation of forward tracker stations

Pseudorapidity coverage of the forward spectrometer

- Five tracking layers within z = 210-300 cm, 1% X₀, ~ 80 µm spatial resolution
- Tracking ACTS package experiment-independent high-level track reconstruction toolkit, including seeding tools and combinatorial Kalman Filter for track finding and vertex reconstruction

V. Riabov, XV-th MPD Collaboration Meeting, April - 2025

✤ Last layer is a TOF detector built of MRPC chambers

End-cap TOF detector(s)

Each MRPC chamber contains 64 strips, which both-sides read-out Each TOF ring contains 24 MRPCs → 6144 read-out channels in total Same electronics based on NINO and HPTDC chips as in the basic TOF-MPD

- End-cap TOF ring design based on a trapezoidal MRPCs
- ↔ Reliable $\pi/K/p$ separation vs. particle momentum for different rapidity ranges

Rather limited momentum resolution is compensated by a large path length (\sim 3m) \rightarrow reasonable PID for charged hadrons