

PWG3 Summary

Arkadiy Taranenko for PWG3

XV MPD Collaboration Meeting, Dubna, Russia, 15-17 April 2025

PWG3 activity

There were 8 reports at MPD Cross-PWG since the previous meeting:

- 1. <u>D. Prokhorova</u>, p_T -N fluctuations in terms of strongly intensive variables defined in separated rapidity intervals, **12 Nov 2024**
- 2. R.G.F. Mendieta, Event-by-event strangeness fluctuations, 12 Nov 2024
- 3. <u>P. Parfenov</u>, Anisotropic flow in MPD-FXT: first look at the production 36, **18 Feb 2025**
- 4. <u>P. Parfenov</u>, Update on the directed and elliptic flow measurements in Xe+W collisions at MPD-FXT, **18 Mar 2025**
- 5. <u>G. Eyyubova</u>, First look at net charge and particle ratio event-by-event dynamical fluctuations with MPD, **18 Mar 2025**
- 6. <u>G. Feofilov</u>, Proton and net-proton High-Order Cumulants: can we do better with MPD at NICA?, **18 Mar 2025**
- V. Troshin, KFParticle for reconstruction of Λ anisotropic flow in the MPD experiment, 8 Apr 2025

A hyperon reconstruction and anisotropic flow measurements $\Lambda \rightarrow p + \pi$

- 1. Track selection
- 2. Build Λ from p and π -
- 3. Selection of Λ candidates
- 4. Fitting the m_{inv} distributions
- 5. Fitting v_n as a function of m_{inv}

$$v_n^{SB}(m_{inv},p_T) = v_n^S(p_T) rac{N^S(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)} + v_n^B(m_{inv},p_T) rac{N^B(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)}$$

- PV primary vertex
- V_0 vertex of hyperon decay
- dca distance of closest approach
- path decay length

Comparison between MPD Hyperon wagon and KFParticle

Refit of daughters with mass hypothesis is not conducted in KFParticle at this moment, that might worsen S/B ratio

 $v_1(\eta)$ and $v_2(p_T)$ of Λ for Bi+Bi at 9.2 GeV in PHSD model

Hyperon wagon and KFParticle provides good agreement with Monte-Carlo and each other 5

Elliptic flow of $\varphi(1020)$ meson

- Wagon for measurements of elliptic flow of φ(1020) meson is under development
- m_{KK} distributions are obtained with background subtraction using mixed event technique
- However, v₂ of φ-mesons and v₂ of background can not be distinguished - m_{inv} fit method is not optimal. Event plane (Δφ) method with background subtraction will be used.

evPlaneFXT wagon for EP measurements in MPD

evPlaneFXT wagon is implemented into MPD Analysis Framework It is similar to evPlane for MPD-CLD and provided with brief how-to

Flow methods for v_n calculation

Tested in HADES: M Mamaev et al 2020 PPNuclei 53, 277–281 M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

 $v_1 = rac{\langle u_1 Q_1^{F1}
angle}{R_1^{F1}} \qquad v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}
angle}{R_1^{F1} R_1^{F3}}$

Where R_1 is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution):

$$R_1^{F2(F1,F3)} = rac{\sqrt{\langle Q_1^{F2}Q_1^{F1}
angle \langle Q_1^{F2}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution):

$$R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle rac{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}
angle \langle Q_1^{Tp}Q_1^{F3}
angle}}$$

Peter Parfenov

Results: $v_1(y)$

Good overall agreement with mc data

Results: $v_2(p_T)$

Good overall agreement with mc data

Flow measurements at the BM@N experiment

Xe+CsI collisions at E_{kin} =3.8

Nucl.Instrum.Meth.A 1065 (2024)

Latest physical run with xenon beam allows us to test analysis techniques on real experimental data

Symmetry plane is measured using subevents from FHCal and FSD+GEM

$v_1(y_{cm},p_T)$ of protons in Xe+CsI data at E_{kin} =3.8A GeV

JAM model is within 8% agreement at $y_{cm} < 1$

dv₁/dy of protons in Xe+CsI data at E_{kin}=3.8A GeV

M. Mamaev, P. Parfenov, A. Taranenko, Phys.Part.Nucl. 55 (2024) 4, 853-858 M. Mamaev, Int.J.Mod.Phys.E 33 (2024) 11, 2441009

 dv_1/dy is in a good agreement with STAR

 $\begin{array}{c} m_{inv} \text{ distributions of } \Lambda \text{ and } K^0{}_S \text{ in the BM} @N \text{ Xe+Cs}(I) \text{ at } 3.8 \text{ GeV} \\ \Lambda \text{ hyperons} & K^0{}_S \text{ mesons} \end{array}$

See V. Troshin's talk

KFParticle provides good peak quality in experimental data

$v_1(y)$ of Λ in the BM@N experiment: comparison with STAR

See V. Troshin's talk

Centrality: 5-40% p_T: 0.4-0.8 GeV/c

The results are systematically lower, maybe because of the difference in system of the collision

Wagon for measuring p_T -N fluctuations in MPD

Analysis of reconstructed UrQMD data shows the possibility to measure $\Sigma[N_F,p_{T,B}]$ in MPD experiment

Event-by-event dynamical fluctuations in MPD

See G. Eyyubova's talk

Fluctuations of conserved quantities (B,S,Q) in a limited phase space probe the QGP phase

Dynamical fluctuation variable v_{dyn} was introduced (to get rid of statistical fluctuations) which measures deviation from Poisson behavior:

S. Jeon, V. Koch, Phys. Rev. Lett. **85**, 2076 S. Jeon, V. Koch, arXiv:hep-ph/0304012

Net charge fluctuations were calculated using v (and vN_{ch}) observable in Bi+Bi collisions at 9.2 GeV:

• Good agreement between MC and Reco

Particle ratio fluctuations currently were measured only on the MC level - results from reconstructed data will be included later on

Fluctuations: high-order cumulant measurements in MPD

See R.G.F. Mendieta's talk

See G. Feofilov's talk

Here a volume factor $V_0 = 2.83 \text{ fm}^3$

Phys. Rev. C 88, 034911 (2013)

$$egin{aligned} C_1 &= \langle \Delta N
angle, \quad C_2 &= \langle (\delta N)^2
angle, \quad C_3 &= \langle (\delta N)^3
angle, \ C_4 &= \langle (\delta N)^4
angle - 3 \langle (\delta N)^2
angle^2. \end{aligned}$$

$$M = C_1, \quad \sigma^2 = C_2, \quad S = \frac{C_3}{(C_2)^{3/2}}, \quad \kappa = \frac{C_4}{(C_2)^2}$$

New Centrality Bin Width Correction (CBWC) is proposed to take into account volume fluctuations (CBWC-V):

$$\begin{split} M &= <\!\!N\!\!> =\!\!C_1, & c1 =\!\!M/V^r = <\!\!N^r\!/V^r\!\!>, \\ \delta N &=\!\!N - <\!\!N\!\!> & \delta N^r =\!\!N^r\!/V^r - <\!\!N^r\!/V^r\!\!> \\ \sigma^2 &=\!<\!(\delta N)^2\!\!> =\!\!C_2, \\ S &=\!<\!(\delta N)^3\!\!>\!/\sigma^3 = & S_r =\!<\!(\delta N^r)^3\!\!>\!/\sigma_r^3, \\ &=\!\!C_3/C_2^{-3/2}, \end{split}$$

 $k = <\!(\delta N)^4 \! > \! / \! \sigma^4 - 3 = = \! C_4 / C_2^2 \qquad \qquad k_r = <\!(\delta N^r)^4 \! > \! / \! \sigma_r^4 - 3$

The study of strangeness number fluctuations and the calculation of the first 4 cumulants were presented at the reconstruction level in the MPD experiment

New CBWC-V corrections and more careful centrality selection might help with the remaining discrepancy (and auto-correlation effects) in the most central collisions for S σ

 $V^r = \langle N^r_{part} \rangle V_0$

Summary and Outlook

• Feasibility study for anisotropic flow:

- $\circ~$ KFParticle software was used in the performance study of the v_n of Λ^0 and compared with the current solutions in the MpdRoot
- Feasibility study for v_n of $\phi(1020)$ have been started current results suggest using event plane ($\Delta \phi$) method with background subtraction
- evPlaneFXT wagon for EP measurements in MPD-FXT is ready for use
- v_n of *p* and π^{\pm} for Xe+W, Xe+Xe at T = 2.5A GeV is shown to have a good agreement between reconstructed and generated data
- Last xenon run at BM@N allows us to test analysis techniques for flow measurements on real experimental data:
 - Results for v_1 of p and d are consistent with the world data
 - Measurements for v_1 of Λ^0 and K_s^0 using KFParticle package are in progress but results are promising

• Performance studies of fluctuations:

- Analysis wagon for studying p_T -N fluctuations is ready for use and $\Sigma[N_F, p_{T,B}]$ shows small sensitivity to efficiency losses due to track reconstruction
- Dynamical fluctuation variable v_{dyn} measured with reconstructed data is consistent with the signal from the model
- During the E-b-E strangeness fluctuations studies, cumulants were measured and were shown to be mostly consistent with the event generator - new corrections and analysis techniques were proposed to correct for existing biases (volume fluctuations, auto-correlation effects, etc.)

Thank you for your attention!

Backup slides

KFParticle formalism

Particles in heavy-ion collision:

KFParticle:

• developed for complete reconstruction of short-lived particles with their $P, E, m, c\tau, L, Y$

Main benefits:

- based on the Kalman filter mathematics
- idependent in sense of experimental setup (collider, fixed target)
- allows one reconstruction of decay chains (cascades)
- daughter and mother particles are described and considered the same way
- daughter particles are added to the mother particle independently

Fitting the m_{inv} distributions of Λ in p_T bins

Fitted by 2 gaus functions + 5-degree polynomial Good fit quality for all bins

MPD in Fixed-Target Mode (FXT)

- Model used: UrQMD mean-field
 - Xe+Xe, E_{kin} =2.5 AGeV ($\sqrt{s_{NN}}$ =2.87 GeV)
 - \circ Xe+W, E_{kin}=2.5 AGeV ($\sqrt{s_{NN}}$ =2.87 GeV)
- Point-like target
- GEANT4 transport
- Particle species selection via TPC and TOF

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

$$v_n = \langle \cos \left[n (arphi - \Psi_{RP})
ight]
angle$$

Anisotropic flow is sensitive to:

- Time of the interaction between overlap region and spectators
- Compressibility of the created matter

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_n{}^{\text{EP}}$ is the event plane angle

Modules of FHCal divided into 3 groups

Additional subevents from tracks not pointing at FHCal: Tp: p; -1.0<y<-0.6; T π : π -; -1.5<y<-0.2;

Results: $v_1(p_T)$

Good overall agreement with mc data

Results: $v_2(y)$

Systematics: xxx, xyy

Good overall agreement with mc data