

TPC and ECAL cooling system: status

XV Collaboration Meeting of the MPD Experiment at NICA

April 16, 2025

Speaker: Alexander Fedotov

The outline

- 1. Installation status;
- 2. Test run;
- 3. High-precision thermometry;
- 4. Research stand status.

Installation status

Installation

MPD Cooling system

O Floor: pump modules + "Kometa" connection

Installation 0 floor

Kometa connection Pump module

Done:

✓ Installation of three pump modules;

- ✓ Stainless steel pipelines "pump modules – manifolds" and "pump modules – Kometa pipeline";
- ✓ Cables and compressed air for automation equipment.

Installation 1st floor

- 3 independent closed contours;
- **<u>116</u>** controlled water subcontours.

1st floor equipment

Installation 1st floor

To do:

- Install electronic cabinets with cables;
- Install flow, pressure, temperature sensors;
- Install heaters;
- Install control pneumatic valves.

Done:

- ✓ All steel manifolds; ✓ All pneumatic shutoff valves; \checkmark All steel enclosures
 - for subcontours;
- ✓ All vacuum tanks;
- ✓ Raised floor.

TPC and ECAL cooling system: status

Installation of pipes

3D pipe routing with support trays

XV Collaboration Meeting of the

MPD Experiment at NICA

Done:

✓ 3D model of 232 pipelines;

✓ Installation of 90 % pipe routing from platform to MPD windows

Test run

Test run

16 December 2024 – three pump modules were washed and tested

Key founds:

- Hydraulic losses on platform steel pipeline 0,4 – 0,6 atm at nominal flow;
- System stability at high pressure (10 atm): no leaks, no breaks;
- At nominal flow contours have 1,5 atm surplus that is enough for water supply.

Testing process: red hoses – air supply, thick black hoses – temporary water lines

TPC and ECAL cooling system: status

High-precision thermometry

What is the problem?

TPC of STAR & ALICE: thermal stability in gas volume ±0,1 °C

But

Best GOST "AA" sensors: $\Delta T_{Pt100} = \pm (0,1 + 0,0017 |T|) C \approx \pm 0,15 C$

...We need 260 channels and sensors with error $\sim \pm 0,03$ °C

What should we do

The plan:

- 1. Calibrate measurement channels;
- 2. Calibrate sensors;
- 3. Develop database;
- 4. Introduce correction algorithm to PLC.

HF Analog Input modules

Siemens 1512-2

Programmable logic controller

Measurement channel calibration

- 1. Take very stable resistance **R**_i (Yokogawa) and validate it (Keithley).
- 2. Calculate ideal temperature T_i if sensor Pt100 has resistance R_i ;
- 3. Plug resistance to Siemens AI and find correction between ideal T_i and siemensmeasured $T_{siemens-i}$
- 4. Build <u>map of corrections</u> for <u>all channels</u> for <u>different temperatures</u> (correction depends on T!)

Yokogawa 2793/01 decade resistance box

0.001 Ohm precision, 2 ppm/°C stability Sponsored by ArcoLab LLC

Keithley DMM7510 multimeter

Sensor calibration

- 1. Put sensors in calibrator chamber.
- 2. Measure raw *T_raw*_i temperature from i-th sensor at *T_etalon* temperature of calibrator sensor;
- 3. Build calibration functions *P* projecting *T_raw*_i to *T_etalon* for each *i*-th sensor at *j*-th temperature.

Calibrator Elemer TK-150-MK

Polynomial calibration function:

 $P_i(a[0]_i, a[1]_i, \dots, a[k]_i, \dots, a[n]_i, T_i) = a[0]_i + a[1]_i \cdot T_i + \dots + a[k]_i \cdot T_i^k + \dots + a[n]_i \cdot T_i^n$

Searching coefficients a_i for each sensor by minimization

Least-squares error L^2 : $L^2 = \sqrt{\sum_{j=1}^{m} \left(P_i(T_i^{\ j}) - T_{etalon}^{\ j}\right)^2}$

OR

Chebyshev's norm L^∞ :

$$L^{\infty} = \max_{j} \left| P_{i}(T_{i}^{j}) - T_{etalon}^{j} \right|$$

Sensor calibration

Calibration even by linear function reduces spread of sensor readings by a factor of 19 (from 0,145 °C to 0,0073 °C);

Error relative to mean sensor value ≈

0,01 °C from sensors + 0,006 °C from channels ≈ 0,016 °C

Absolute temperature error ≈

0,01 °C from sensors + 0,01 °C from calibrator + 0,006 °C from channels + 0,003 °C from Keithley ≈ 0,03 °C

Spread of sensor readings Δ for calibration polynomial of order *n*

Measurement loop

Research stand status

Research stand status

Planned Experiments:

- Debugging of control algorithms for hydraulically coupled subcontours;
- Debugging of thermal stabilization regimes on the operational ROC chamber;
- Development and testing of algorithms for cavitation lock removal;
- Hydrodynamic studies of new radiators (synchronization modules and FEC card readout controllers);

Vorticity air detector test

Subcontours

Leakless-система термостабилизации и система термометрии для детектора TPC установки MPD

Thank you

Co-authorship and gratitude Research was directly conducted by

Institute for Nuclear Problems of Belarusian State University: Ilya Zur

Yulia Shafarevich

Maryia Miadzvedzeva

ArcoLab: Alexander Shish, Vladimir Senkevich, Mikhail Vaschilenko, Alexander Galuza, Dmitiry Pristavkin JINR:

Alexander Fedotov, Gleb Mescheryakov, Oleg Fateev, Alexander Ryubakov, Alexander Makarov, Nikita Bekmetov, Igor Balaschov, Nelli Pukhaeva (NOSU)

Installation of Vacuum tanks, Pump modules, Manifolds

Water plant

Assembled at platform

Manifolds: redistributes water from the contour line to the individual subcontours Water Tank: An airtight reservoir that contains water below atmospheric pressure. Tested for leaks at 0.2 atm and 10 atm.

Pump module

Pump modules - photos

Assembled under 1st floor of platform

Water tanks & manifolds

Heat exchanger and thermal sensor for TPC gas mixture

Thermal stabilization of TPC gas

Motivation

Thermal stabilization ± 0.1 K is needed for reliable event reconstruction in $Ar_{0.8}(CO_2)_{0.2}$

Challenges

- Measure gas temperature with accuracy better than ±0.1 K
- Prepare gas at a specific temperature to feed into the TPC
- Minimize the influence of the environment on the gas supplied to the TPC

Initial concept by I.A. Balaschov

Heat exchanger

Shell-and-tube heat exchanger:

- Gas flows in small tubes with large surface area;
- Water environment outside of small tubes provides heat exchange

Stationary 3D Navier-Stokes equations for gas and water:

$$\begin{cases} \nabla \cdot \vec{u} = 0 \\ \rho_0(\vec{u} \cdot \nabla)\vec{u} = \nabla \cdot \left[-p\mathbf{I} + \mu_0 \left(\nabla \vec{u} + (\nabla \vec{u})^T \right) \right] + \rho_0 \beta \left(T_0 \right) \left(T - T_0 \right) \vec{g} \\ \rho_0 C_{p0}(\vec{u} \cdot \nabla)T = \nabla \cdot \lambda_0 \nabla T \end{cases}$$

Mesh for computations

- \vec{u} fluid velocity;
- μ dynamic viscosity;
- *p* pressure;
- I identity matrix.
- λ_0 heat conduction coefficient at reference temperature T_0 ;
- C_{p0} heat capacity at reference temperature T_0 ;
- β compressibility,
- ρ_0 density at reference temperature T_0 .

Heat exchanger

Prototype simulation parameters:

- Length 0.55 meters;
- Inlet gas is 10 K hotter than water; Gas flow is 20 200 l/min. •

- Water flow is 0.1 m³/h;

Heat exchanger

Shell-and-tube heat exchanger for gas thermal stabilization:

- 74 gas pipes of 6 mm diameter
- ~8 kg weight
- Being manufactured at LHEP

Water inlet

Gas temperature sensor

The gas volumetric heat capacity is 10⁴ less than that of liquids and solids

To measure temperature of gas (not a wire or a wall) a sensor <u>must be</u> drown deep in gas

Gas temperature sensor

- Argon flow $\approx 800 \text{ cm}^3/\text{min}$;
- Water jacket is around testing tube;
- Pt100 RT + NI Controller;

Testing tube with sensor fully in

Sliding sensor almost out of tube

Time dependence of ΔT between the control and the full-drown sliding sensor

<0.03 K gradient is achieved inside the testing tube with gas about 15 °C and room temperature 21 °C

Gas temperature sensor

Prototype of gas temperature sensors with swagelok and wire support

Difference between control and sliding sensor temperature on the length of wires inside gas

Conclusions

- Pumping modules, vacuum tanks, and collectors have been delivered and installed on the platform;
- A shell-and-tube heat exchanger for the thermal stabilization of the flowing gas has been developed. The prototype is being manufactured in the LHEP workshops;
- Prototypes of temperature sensors for the flowing gas have been proposed and manufactured, with an expected measurement accuracy of 0.03 K;
- Experiments conducted have shown the necessity of thermal stabilization of the gas line using a water jacket.

Event	Date
Finalizing of platform pipes installation for	November 2024
MPD cooling system	
Assembling of temporary scheme for pipe	
washing and testing	November 2024
Connecting of pump modules for testing	November 2024
Continuation of assembling	December 2024

Scheme

The <u>pump module &</u> <u>vacuum tank</u>

- provides circulation,
- maintains low pressure,
- filters,
- thermally stabilizes
- water before entering MPD

Principal scheme of water plant:

Pump module – main equipment

TPC and ECAL cooling system: status

Pump module – control equipment

Frequency converter EMC **Temgy DN 20 flowmeter** Bürkert 2702 & 2301 **PLC Siemens** input filter pneumatic control valves flow measurement I/O modules controls flow, smoothens Read from sensors, **Automatic** transitions **Control valves** switches N Bus zero ARCOLAB **Pt-100-B** CCT-8930 conductometer **Aplisens pressure sensors** Automation cabinet thermometer Pressure control controls ion concentration

XIV Collaboration Meeting of the MPD Experiment at NICA

TPC and ECAL cooling system: status

Схема Cu-TS замкнутого контура

