Recent measurements of flow from RHIC Beam Energy Scan (BES) Program

Subhash Singha (subhash@impcas.ac.cn) 中国科学院近代物理研究所 Institute of Modern Physics Chinese Academy of Sciences, Lanzhou

April 15 – 18, 2025

XV MPD Collaboration Meeting

- A few selected results from BES-II
 - Directed (v_1) flow
 - Elliptic (v_2) flow
- Summary

Outlook

• RHIC Beam Energy Scan (BES) Program STAR Experiment and flow results from BES-I

RHIC BES program

Conjectured QCD Phase diagram

Explore QCD Phase diagram by varying beam energy, proxy for baryon chemical potential (μ_B)

Map the turn off signature of Quark Gluon Plasma

 Search for signatures of Cross-over, Critical point, 1st order Phase Transition

Collective flow

A. Poskanzer el. al. arXiv: 0809.2949

Collective flow can be measured from the Fourier expansion

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum 2v_{n}\cos n(\phi - \Psi_{n}^{EP} + \frac{1}{2})\right)$$
$$V_{1} : \text{Directed flow}$$
$$V_{2} : \text{Elliptic flow}$$
$$V_{3} : \text{Triangular flow}$$
$$V_{n} = \langle \cos n(\phi - \Psi_{n}^{EP}) \rangle / \Psi_{\text{Resolution}}$$

• Flow coefficients are sensitive to the initial state and properties of the medium; Sensitive to EoS and degrees of freedom

Directed flow measurements from BES-I

STAR: PRL 112, 162301 (2014) PRL 120, 062301 (2018)

magnitude and features in v₁

Quark coalescence hypothesis

Test the assumption that the de-confined quarks acquired v_n , then they form hadrons:

 $v_n^{\text{hadron}} = \sum v_n^{\text{constituent-quarks}}$

The origin of scaling is interpreted as an evidence for dominance of quark degrees of freedom

Using anti-particles quark coalescence sum rule:

• Holds for
$$\sqrt{s_{\rm NN}} \ge 11.5 \text{ GeV}$$

Breaks at $\sqrt{s_{\rm NN}} = 7.7 \, {\rm GeV}$

Where does coalescence hypothesis breaks $? \rightarrow BES-II$ data can provide high precision test

Quark coalescence hypothesis holds over a broad energy range

- Not sufficient precision at lower energies, but hints for ϕ not following mesons!

High precision measurement from BES-II can make it clear

• Baryon-meson separation in v_2 for $\sqrt{s_{NN}}$ > 19.6 GeV (expected from parton recombination)

STAR: PRL 110, 142301 (2013) STAR: PRC 88, 014902 (2013)

RHIC BES-II program

Conjectured QCD Phase diagram

with excellent precision 8 Subhash Singha @ MPD 2025

BES Program:

- Uniform acceptance, full azimuthal coverage, excellent PID capability
- <u>TPC (iTPC)</u>: tracking, centrality and event plane
- EPD, ZDC: event plane reconstruction
- <u>TPC+TOF (eTOF)</u>: particle identification \bullet

STAR Detector

Selected Results from BES-II

Directed flow from STAR BES-II

- Identified particle's v_1 extended to STAR Fixed target energies at $\sqrt{s_{NN}} = 3.0 - 4.5 \, \text{GeV}$
- Kaons changes sign at $\sqrt{s_{NN}} = 4.5$ -7.7 GeV, while proton changes sign at $\sqrt{s_{NN}} = 11.5 - 14.5 \text{ GeV}$
- ϕ -meson v_1 follows baryons (p and Λ) high μ_B , unexpected trend !!

Need theoretical inputs to understand these features

Directed flow from STAR BES-II

- At low p_T : π^+, K^{\pm} and $K_S^0 v_1$ -slope is negative
- Anti-flow can be explained by JAM with nuclear shadowing, Kaon potential is not necessary

Number of constituent quark scaling (NCQ) at RHIC

QM 2025, Morind 2025 (STAR)

These measurements can help constrain the on-set of partonic collectivity and role of nuclear shadowing

K* directed flow and hadronic re-scattering

Electromagnetic field in HIC

Gursoy et al, Phys Rev C 89, 054905 (2014)

- The moving spectators can produce enormously large **B** field (eB $\sim 10^{18}$ G) There could be three competitive effects
- <u>Hall effect:</u> $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$ \bullet Lorentz force exerts a sideways push on charged particles In opposite directions for opposite particles (along -ve X-direction in +ve rapidity and vice-versa)
- <u>Faraday effect:</u> $\nabla \times$ Time dependent **B** field generates a large **E** field Induced Faraday current will oppose the drift due to **B** field
- Coulomb effect:
- Imprints of EM f
- Hall: positive Δv_1 lacksquare
- Faraday: negative
- Coulomb: negativ

Directed flow: $v_1 \sim \langle \cos(\phi - \Psi_R) \rangle$

$$\mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$$

Coulomb field of the charged spectators

ield effects	<u>Observable</u>
	$\Delta v_1 \sim v_1(h^+) - v_1(h^-)$
$\Delta \Lambda \nu$	Non-EM field effects
$-\Delta v_1$	• Transport: $\Delta v_1^{\dagger} \neq 0$
ve Δv_1	•

• Δv_1 sensitive to **QGP** conductivity (σ)

Charge dependent directed flow

Colossal Magnetic Field Detected in Nuclear Matter ebruary 23, 2024 • Physics 17, 31

- For proton's
- **Baryon transport + EM field** with QGP conductivity $\sigma \sim 0.023$ fm⁻¹ required to capture system size dependence across centrality
- Model fail to capture pions splitting, need more studies

Splitting in most-central collisions \rightarrow related to baryon transport

Proton splitting in mid-central and peripheral collisions \rightarrow interplay between baryon transport and electro-magnetic field

Parida et al, 2305.08806, ATHIC 2025 Parida et al (2503.04660)

Charge dependent directed flow: energy dependence

- For proton's
- In peripheral, negative Δv_1 increases with decreasing beam energy (EM-field)

Baryon transport + EM-field \rightarrow needed modeling at these energies 18

• In (mid-) central collisions: positive Δv_1 increases with decreasing beam energy (baryon transport)

Summary

• <u>A few selected collective flow (v_1, v_2) measurements from RHIC BES-program</u>

- $\sqrt{s_{NN}}$ = 4.5-7.7 GeV \rightarrow sign change in Kaon v_1
- Sign change in ϕv_1 and it follows baryons (p and Λ)
- Observation of anti-flow for π^+, K^\pm and $K_S^0 \rightarrow$ explained by shadowing (Kaon potential is not necessary)
- For $\sqrt{s_{NN}} \ge 7.7 \text{ GeV} \rightarrow v_2 \text{ NCQ-scaling holds}$ lacksquare
- $\sqrt{s_{NN}}$ < 4.5 GeV \rightarrow Gradual breaking of v_2 NCQ-scaling
- Dominance of *partonic* collectivity above 4.5 GeV
- \bullet

STAR-BES and MPD \rightarrow complementary and essential to probe the QCD phase structure and medium properties in energy between 3 - 10 GeV

From MPD CDR

 $n_E \approx 1.5 - 2.0 n_0$. Therefore, the major goal of the NICA/MPD Project is the study of in-medium properties of hadrons and the nuclear matter equation of state, including a search for possible signals of deconfinement and/or chiral symmetry restoration phase transitions and the QCD critical endpoint in the region of the collider energy $\sqrt{s_{NN}} = 4 - 11$ GeV. Due to the high complexity of this

https://mpd.jinr.ru/wp-content/uploads/2023/11/MPD_CDR_en.pdf

Non-trivial Δv_1 pattern at RHIC, with sign change in peripheral collisions for protons Interplay of baryon transport and electromagnetic field with conducting QGP medium

Thank you for your attention

Many thanks to STAR and theory colleagues for discussions

Charge dependent directed flow: system size dependence

 $\Delta v_1 : h^+ - h^-$

in different systems several factors to be considered:

- strength and lifetime of EM-field
- QGP lifetime and conductivity
- transport

•

Observation

Parida et al (2503.04660)

- Central: Baryon transport
- Peripheral: EM-field

Charge dependent directed flow: system-size dependence

SQM 2024 (STAR)

<u>Net-baryon + EM</u>

- **Difference** Δv_1 : h⁺ h⁻
- pions & kaons: U+U ~ Au+Au ~ Isobar
- protons: U+U < Au+Au < Isobar

NO effect from Net-baryon + EM

Sum Σv₁ : h⁺ + h⁻ \bullet

22

- pions & kaons: U+U ~ Au+Au ~ Isobar
- protons: U+U ~ Au+Au ~ Isobar

Baryon transport + EM-field

 \rightarrow can capture system size independence of h⁺ + h⁻

Parida et al, 2305.08806, ATHIC 2025 Parida et al (2503.04660)

Number of constituent quark scaling (NCQ) at RHIC

