



# Recent updates in di-electron measurements with MPD experiment

Sudhir Pandurang Rode, Yonghong Wang

April 17, 2025

XV MPD Collaboration meeting

Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v

- Optimization of the acceptance and underestimated reconstructed signal
- A look at the Low B sample.
- Alternative approach for dielectron analysis [Yonghong].
- Conclusions

# Analysis Strategy

- $\Rightarrow$  Three electron pools:
- $\to$  Pool-1 fully reconstructed tracks^(\*) in fiducial area (| $\eta|<$  0.7)  $p_{\rm T}\gtrapprox$  110 MeV/c
- $\to$  Pool-2 fully reconstructed tracks in veto area  $0.7 < |\eta| <$  1.0  $p_T \gtrapprox$  110 MeV/c.
- $\rightarrow\,$  Pool-3 with tracks reconstructed in TPC.
  - $p_{\rm T}$  <= 110 MeV/c ightarrow not reaching the TOF.
  - $p_{\rm T} > 110~{\rm MeV/c} 
    ightarrow$  reaching the TOF.
  - Step 1 No further pairing (NFP): Tagging between Pool 1 and Pool 2.
  - Step 2 Close TPC cut (CTC): Tagging between Pool 1 and 3, and pairs within certain  $M_{inv}$  and opening angle are removed.
  - Step 3: Rest of the tracks with  $p_{\rm T} > 200$  MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

MLP: Reg. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.2-1.5 GeV/c2

|                    | Fid. $<$        | Fid. $<$          | Fid. $<$         | Fid. $<$        | Fid. $<$         | Fid. <0.9      |
|--------------------|-----------------|-------------------|------------------|-----------------|------------------|----------------|
|                    | 0.6             | 0.7               | 0.75             | 0.8             | 0.85             | $ \eta  < 1.2$ |
| U                  | $21491 \pm 147$ | 30976±176         | 35688±189        | 40566±201       | 45954±214        | 51297±226      |
| В                  | $20504{\pm}143$ | $29455 {\pm} 172$ | $34026 \pm 184$  | $38863 \pm 197$ | $44052 \pm 210$  | 49267±222      |
| U-B                | 987±205         | $1521 \pm 246$    | $1663 {\pm} 264$ | $1703 \pm 282$  | $1902 {\pm} 300$ | 2030±317       |
| (U-B)/B            | 4.81±0.05       | 5.16±0.04         | 4.89±0.04        | 4.38±0.03       | 4.32±0.03        | 4.12±0.03      |
| <sup>(†)</sup> BFE | 23              | 38                | 40               | 37              | 40               | 41             |
| S                  | 1359            | 1860              | 2071             | 2314            | 2534             | 2724           |
| S/B                | 6.63            | 6.31              | 6.09             | 5.95            | 5.75             | 5.53           |
| BFE                | 44              | 57                | 61               | 67              | 71               | 73             |

- B Combinatorial background approximated by like sign pairs.
- Fiducial acceptance was varied from  $|\eta| < 0.6$  to 0.9.
- The signal increases with acceptance but the background increases faster and consequently S/B decreases.
- Measured signal is underestimated compared to true reconstructed signal.

4 / 26

 $^{(\dagger)}$ Background free equivalent signal - signal with same relative statistical error as in background free situation;  $BFE = \frac{S^2}{S+2B} \approx \frac{S^2}{2B} (S <<< B)$ Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v April 17, 2025

#### ULS, LS and Signal: MLP



Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v

April 17, 2025

MLP: Req. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.65-1.5 GeV/c2

|                    | Fid. $<$   | Fid. $<$         | Fid. $<$   | Fid. $<$        | Fid. $<$         | Fid. < 0.9      |
|--------------------|------------|------------------|------------|-----------------|------------------|-----------------|
|                    | 0.6        | 0.7              | 0.75       | 0.8             | 0.85             | $ \eta  < 1.2$  |
| U                  | 5485±74    | 8259±91          | 9724±99    | $11212{\pm}106$ | $12941{\pm}114$  | 14874±122       |
| В                  | 4920±70    | 7406±86          | 8739±93    | $10232{\pm}101$ | $11917{\pm}109$  | $13736{\pm}117$ |
| U-B                | 566±102    | $852{\pm}125$    | 985±136    | 980±146         | $1025 {\pm} 158$ | $1138{\pm}169$  |
| (U-B)/B            | 11.50±0.23 | $11.51{\pm}0.18$ | 11.27±0.17 | 9.57±0.13       | 8.60±0.11        | 8.28±0.10       |
| <sup>(‡)</sup> BFE | 31         | 46               | 53         | 45              | 42               | 45              |
| S                  | 562        | 774              | 876        | 971             | 1074             | 1167            |
| S/B                | 11.42      | 10.45            | 10.03      | 9.49            | 9.01             | 8.49            |
| BFE                | 30         | 38               | 42         | 44              | 46               | 48              |

- B Combinatorial background approximated by like sign pairs.
- Same numbers as previous table but for 0.65 GeV  $< m_{inv}^{e^+e^-} < 1.5$ GeV.
- The measured signal and true reconstructed signal are close to each other in this region.

6/26

 $^{(\ddagger)}$ Background free equivalent signal - signal with same relative statistical error as in Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v April 17, 2025

MLP: Req. 34 (12.1M except Fid. < 0.6: 11.6M) Invariant mass: 0.2-0.65 GeV/c2

|         | Fid. $<$          | Fid. $<$          | Fid. $<$        | Fid. $<$        | Fid. $<$        | Fid. <0.9       |
|---------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|         | 0.6               | 0.7               | 0.75            | 0.8             | 0.85            | $ \eta  < 1.2$  |
| U       | $16005 {\pm} 127$ | $22717 \pm 151$   | $25965 \pm 161$ | 29354±171       | 33012±182       | 36423±191       |
| В       | $15584{\pm}125$   | $22048 {\pm} 148$ | $25287 \pm 159$ | $28630 \pm 169$ | $32135{\pm}179$ | $35531 \pm 188$ |
| U-B     | 421±178           | $669{\pm}212$     | 678±226         | 724±241         | 877±255         | 892±268         |
| (U-B)/B | 2.70±0.03         | 3.03±0.03         | 2.68±0.02       | 2.53±0.02       | 2.73±0.02       | 2.51±0.02       |
| BFE     | 6                 | 10                | 9               | 9               | 12              | 11              |
| S       | 796               | 1086              | 1195            | 1343            | 1460            | 1557            |
| S/B     | 5.11              | 4.93              | 4.73            | 4.69            | 4.54            | 4.38            |
| BFE     | 20                | 26                | 28              | 31              | 32              | 33              |

- B Combinatorial background approximated by like sign pairs.
- Same numbers for 0.2 GeV  $< m_{inv}^{e^+e^-} < 0.65$  GeV.
- Similar underestimation of measured signal.
- Deficit seems to remain intact even in case of two independent samples: e.g. (Fid < 0.7) and (Fid < 0.9 Fid < 0.7).
- Statistics or systematic?

#### Production Request 25 (31M): Fid. < 0.7

|             | 1D                | MLP             | 1D                 | MLP             | 1D                 | MLP             |
|-------------|-------------------|-----------------|--------------------|-----------------|--------------------|-----------------|
|             | 0.2 to 1.5 GeV/c2 |                 | 0.2 to 0.65 GeV/c2 |                 | 0.65 to 1.5 GeV/c2 |                 |
| U           | 37561±194         | 79304±282       | 29483±172          | 64071±253       | 9736±99            | 18742±137       |
| В           | $36329 {\pm} 191$ | $76174{\pm}276$ | $28767 \pm 170$    | $61803 \pm 249$ | $9210{\pm}96$      | $17794{\pm}133$ |
| U-B         | $1232 \pm 272$    | $3130 \pm 394$  | $716 \pm 241$      | 2268±355        | $526 \pm 138$      | $948{\pm}191$   |
| (U-B)/B (%) | 3.39±0.02         | 4.11±0.02       | 2.49±0.02          | 3.67±0.02       | 5.71±0.08          | 5.33±0.06       |
| BFE         | 21                | 63              | 9                  | 41              | 15                 | 25              |
| S           | 1647              | 3291            | 1025               | 2130            | 656                | 1244            |
| S/B (%)     | 4.53              | 4.32            | 3.56               | 3.45            | 7.12               | 6.99            |
| BFE         | 37                | 70              | 18                 | 36              | 23                 | 42              |
|             |                   |                 |                    |                 |                    |                 |

- B is combinatorial background approximated by like sign pairs.
- Similar numbers from previous results with request 25 production.
- Slight underestimation in case of 1D cuts, but within uncertainties, there is none in case of MLP.
- Hinting towards statistics issue in Request 34: though strong claim to be made after the check with more statstics.

(日本)

#### ULS, LS and Signal: Req 25: 1D and MLP







- The underestimate of the yield in low mass region seems to be statistics.
- Would be interesting to have a new production with higher statistics.
- Similar to ρ, ω and φ decays, enhance η-Dalitz decays by some factor: Not as as large as 20 factor (e.g. 4 or 5).

《曰》 《曰》 《曰》 《曰》 《曰》

# Analysis w/ Low magnetic field (B = 0.2T) sample

- Combinatorial background can be suppressed by increasing tagging efficiency of  $\pi^0$ -Dalitz and conversion pairs.
- It was suggested to use the low B sample in the dielectron analysis.
- As it would help in better reconstruction of low  $p_{\rm T}$  tracks.
- Request 28: 10M events.
- New parameterizations were obtained for these studies.

#### Low B: Minimum $p_{\rm T}$ to enter or exit the TPC



Sudhir Pandurang Rode, Yonghong Wang Recent updates in

Cut-offs to enter or exit the TPC decreased with low B sample ( $|\eta| \approx 0$ ).

- 30 MeV/c  $\rightarrow$   $\approx$  10 MeV/c.
- 90 MeV/c  $\rightarrow$   $\approx$  35 MeV/c.

• 110 MeV/c 
$$ightarrow$$
 45 MeV/c.



#### Parameterizations: extended acceptance in $p_{\rm T}$



#### Efficiency and Purity: Low (Req. 28) and Normal (Req. 25) B



#### Conversion rejection: Low (Req. 28) and Normal (Req. 25) B



This would lead to significant increase in combinatorial background. Conversions at large production radii are not rejected despite applying tight DCA selections.



#### Low and Normal B: DCAx distributions (Electrons within $|\eta| < 1.2$ )



I. Secondaries (here, conversions electrons) have wider DCA in Low B compared Normal B.

II. Shape of primary electrons (all electrons except conversions) have similar shapes.

→ < Ξ →</p>

E SQA

15 / 26

### 1D cuts (Fid. < 0.7)

Req. 25: B = 0.5T (7.7M), Req. 28: B = 0.2T (8M) Invariant mass: 0.2 to 1.5 GeV/c2

Bef. No Further Pairing Aft. No Further Pairing Aft. Close TPC Cut

| Invariant Mass in MeV    | -               | 120             | 80              |
|--------------------------|-----------------|-----------------|-----------------|
| Opening Angle in degrees | -               | -               | 10 (5)          |
| U                        | 28178±168       | 21690±147       | 9129±96         |
| U                        | 82708±288       | $56495 \pm 238$ | $26610 \pm 163$ |
| В                        | $28054{\pm}167$ | $21558{\pm}147$ | $8935{\pm}95$   |
| В                        | 82329±287       | $56345 \pm 237$ | $26304{\pm}162$ |
| U-B                      | $125 \pm 237$   | $131\pm208$     | $194{\pm}134$   |
| U-B                      | 379±406         | $149 \pm 336$   | 306±230         |
| (U-B)/B (%)              | $0.44{\pm}0.00$ | $0.61{\pm}0.01$ | 2.17±0.03       |
| (U-B)/B (%)              | 0.46±0.00       | 0.27±0.00       | $1.16{\pm}0.01$ |
| BFE                      | 0               | 0               | 2               |
| BFE                      | 1               | 0               | 2               |
| S                        | 404             | 395             | 347             |
| <u>S</u>                 | 359             | 329             | 300             |
| S/B (%)                  | 1.44            | 1.83            | 3.89            |
| S/B (%)                  | 0.44            | 0.58            | 1.14            |
|                          |                 |                 |                 |
| BFE                      | 3               | 4               | 7               |
| BFE                      | 3<br>1          | 4<br>1          | 7<br>2          |

• B - Combinatorial background approximated by like sign pairs.

#### ULS, LS and Signal: 1D cuts



Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v

April 17, 2025 17 / 26

# Alternative approach for dielectron analysis by Yonghong

- The dielectron measurements are complex in nature.
- An alternative approach is being developed by Yonghong.
- Similar basic philosophy as Close TPC Cut analysis: to remove the combinatorial background from pi0-Dalitz and conversions by increasing tagging efficiency.
- This method is based on linear selection cuts (No ML).
- Pairs from conversions (PCM) and pi0-Dalitz are rejected by tagging partner with loose cuts.
- Results are compared with Close TPC cut analysis method.

► ▲ = ► = = • • • •

### Track reconstruction and eID

- $\bullet$  event cut: zvertex < 80cm  $\rightarrow$  11M in total
- Track cut:  $|\eta| < 1$ ; nhits > 39; dca  $|n\sigma| < 2.5$ ;  $p_{\mathrm{T}} > 0.2$  GeV/c;
- PID cut:
  - TPC e-ID:  $|n\sigma_{\pi}|>2:$  if p<0.7 GeV/c, (1.67×p 2.167) <  $n\sigma_{e}<2:$  if p>0.7 GeV/c, -1 <  $n\sigma_{e}<2$
  - matched to TOF (3 $\sigma$  in dphi, 2 $\sigma$  in dzed); TOF e-ID:  $|\sigma_{\beta}| < 2$
  - matched to ECal ( $2\sigma$  in dphi and dzed); ECal PID



# Combinatorial background: Invariant mass spectra



FG True e+e-Conversion Dalitz True signal

- Most of combinatorial background are from pairs:
  - where at least one electron is from pi0 Dalitz decay.
  - where at least one electron is from photon conversion.



# Tagging electrons from conversion using PCM

- Pair tightly identified electrons with loosely reconstructed and identified oppositely charged electrons with following cuts:
- $p_{\rm T}>$  50 MeV/c; nhits > 10;  $|\eta|<$  2.5; TPC 2 $\sigma$  elD or (TPC 2 $\sigma$  and TOF 2 $\sigma$ ) elD if matched to TOF.



 $\approx$  80% of pairs from the PCM are selected for tagging with the applied cuts.

# Tagging electrons from conversion using PCM: Invariant mass spectra



Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements v April 17, 2025 22 / 26

(4回) (三) (三) (三) (三) (○) (○)

# Tagging electrons from Dalitz

- Pair tightly identified electrons with loosely reconstructed and identified oppositely charged electrons with following cuts:
- $p_T > 50 \text{ MeV/c}$ ; nhits > 10;  $|\eta| < 2.5$ ; TPC 2 $\sigma$  elD or (TPC 2 $\sigma$  and TOF 2 $\sigma$ ) elD if matched to TOF: DCA < 5 $\sigma$ : Mee < 0.1 GeV/c2.



# Best results so far and comparison with CTC analysis



Results are close to those from CTC analysis with ML approach. Similar cuts should be applied for apple-to-apple comparison: further optimization is foreseen.

24 / 26

# Conclusions

- Optimization of fiducial and veto region is studied: more checks are needed.
- Reconstructed signal between 0.2 to 0.65 GeV/c is underestimated: seems to be due to statistics.
- Enhancement of  $\eta$ -Dalitz decays might help reconstructing the signal in the region.
- Low magnetic field provides better efficiency at low  $p_{\rm T} 
  ightarrow$  poor conversion rejection.
- S/B ratio is worse than Normal B scenario (Request 25) due to large CB from conversions: however, optimization of the pair reconstruction cuts and Machine learning could bring some improvement.
- Alternative analysis approach is being developed by Yonghong: CB rejection is performed using PCM and Dalitz tagging.
- first results are comparable with CTC analysis: apple-to-apple comparison needs to be performed → similar cuts, weighing procedure etc.

# THANK YOU

Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements April 17, 2025 26/26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# **BACK-UP**

Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements April 17, 2025 1/11

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Comparision between LS: Private (547K events)



- No flat enhancement in LS after 20 factor.
- LS after reweighting back 20 factor have simialr shape as without enhancement case.

-

# Comparision between LS and (ULS-TrueSignal)



- In the analysis, combinatorial background is approximated by Like sign.
- It seems no distortion within actual combinatorial (ULS-True signal) is visible either.
- Thus, enhancing η-Dalitz may work as well: Similar excercise can be carried out for this.

# Comparision between LS: Private (547K events)



- No flat enhancement in LS after 20 factor.
- LS after reweighting back 20 factor have simialr shape as without enhancement case.

4 E

# Comparision between LS and (ULS-TrueSignal)



- In the analysis, combinatorial background is approximated by Like sign.
- It seems no distortion within actual combinatorial (ULS-True signal) is visible either.
- Thus, enhancing η-Dalitz may work as well: Similar excercise can be carried out for this.

#### Low and Normal B: DCAz distributions (Electrons within $|\eta| < 1.2$ )



I. However, z-component of DCA has similar shapes in both Low B and Normal B.

≡ •ી લ (~ 6 / 11

< E

47 ▶

#### Low (Req28) and Normal (Req25) B: Momentum resolution



#### Low (Req28) and Normal (Req25) B: Mass resolution



I. Along with momentum, mass resolution also gets worse with low magnetic field.

Sudhir Pandurang Rode, Yonghong Wang Recent updates in di-electron measurements April 17, 2025

#### 8/11

<<p>A 目 > A 目 > A 目 > 目 = のQQ

#### TOF Matching cut



9/11

#### Track selection - 1D cuts analysis

- ightarrow Pool-1 fully reconstructed tracks $^{(\S)}$  in fiducial area  $(|\eta| < 0.7)$ 
  - NHits > 39, DCA <  $3\sigma$ , TPC dEdX (p dep. (p < 0.8) and -1 to  $2\sigma$  (p > 0.8)), TOF Matching (d $\phi$  and dz <  $3\sigma$ ), TOF (-2 to  $2\sigma$ ), ECal PID (p dep. < E/p < 1.5 and m<sup>2</sup> <  $2\sigma$ ), ECal Matching (<  $3\sigma$ ).
- ightarrow Pool-2 fully reconstructed tracks in veto area (0.7 <  $|\eta|$  < 1.0) (Same cuts.).
- $\rightarrow$  Pool-3 with tracks reconstructed in TPC.
  - $p_T <= 110 \text{ MeV/c} \rightarrow \text{not matched in TOF and ECal} (|\eta| < 2.5, \text{ NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-4 \text{ to } 4\sigma)).$
  - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in TOF but matched in ECal} (|\eta| < 2.5, \text{NHits} > 10, \text{DCA} < 5\sigma, \text{TPC dEdX} (-3 to 3\sigma), \text{ECal} (p dep. < E/p < 1.5 and m<sup>2</sup> < 2\sigma, \text{ECal Matching (< 3\sigma)}).$
  - $p_T > 110 \text{ MeV/c} \rightarrow \text{not matched in ECal but may or may not in TOF} (|\eta| <2.5, NHits > 10, DCA < 5\sigma, TPC dEdX (-1 to 2<math>\sigma$ ), TOF PID (if matched).
  - No further pairing (NFP):  $M_{\rm inv} < 120 \text{ MeV}/c^2$ .
  - Close TPC cut (CTC):  $M_{\rm inv} < 80 \ {\rm MeV}/c^2$  and opening angle  $< 10 \ {\rm or} \ 5^o$ .



April 17, 2025

3 1 4 3

< 1<sup>™</sup> >

= 990