
  

Software development to improve PHOS time resolution
(in collaboration with NRC “Kurchatov Institute” - IHEP)

Time values were extracted from the raw data of the currently operating PHOS using our proposed method (“ZC”) and some other known algorithms. The correspondent time distributions were compared with each other. The preliminary estimations was made using small amount of data available. A single channel time resolution of about 900 ps

 has been achieved for photons. It corresponds to a time resolution of about 400-500 ps after taking into account all the channels belonging to the electromagnetic shower. It was done without a preliminary calibration. After obtaining more raw data and the calibration, the time resolution is expected to improve even more. 

“Student’s” t-test and Bootstrap were used to compare the algorithms. Differences of variances of the times extracted from channels of  50 channels groups were analyzed  simultaneously using t-statistic.

Time distributions. Channel 46x31 from the third module 

During this study, an analysis tool was developed that can be useful for such kind of raw data analysis on other detectors also.

“Linear” method is based on linear fitting of the front samples of signals;
“BF” method is based on fitting of the signal samples by semi-Gaussian function;
“ZC” method is based on linear fitting of transformed signal samples.



  

 Parzen – Rosenblatt estimator vs histogram
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1
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Let  (                   ) be independent and identically distributed samples drawn from some univariate distribution with an unknown density ƒ at any given point x. Its Parzen - Rosenblatt estimator is  

The details of the RooFit algorithm are described here: 

Cranmer KS, Kernel Estimation in High-Energy Physics. Computer Physics Communications 136:198-207,2001 - e-Print Archive: hep ex/0011057     

Original works: 

Rosenblatt M. Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical Statistics. 1956                                Parzen E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics. 1962

where K is the kernel, a non-negative function, and h>0 is a parameter called the bandwidth (or window). In the RooFit algorithm K is Gaussian.

Parzen - Rozenblatt estimator (solid blue curve) converge faster (compared to the histogram) to the true underlying density for continuous random variables. 
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Bootstrap resampling
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PHOS

Hans Muller, Zhongbao Yin for PHOS Collaboration  https://alice-phos.web.cern.ch/sites/default/files/documents/Manuals/PHOS-User-Manual_2007.pdf



  

64 crystals in η

56 crystals in φ

Δη = 0.24  ( 1.263 m )

Δφ  = 20
o
 (0.722 m) 

Photo of 1 PHOS Module with  56 x 64 = 3584  PWO  crystals  

Hans Muller, Zhongbao Yin for PHOS Collaboration  https://alice-phos.web.cern.ch/sites/default/files/documents/Manuals/PHOS-User-Manual_2007.pdf

J. Grahl et al. / Nuclear Instruments and Methods in Physics Research A 504 (2003) 44–47

https://alice-phos.web.cern.ch/sites/default/files/documents/Manuals/PHOS-User-Manual_2007.pdf


  

“The bootstrap is a computer-based technique for estimating 
standard errors, biases, confidence intervals and other 
measures of statistical accuracy. It automatically produces 
accuracy estimates in almost any situation, including very 
complicated ones, without requiring much thought from the 
statistician. This is a considerable virtue, but a virtue that can 
be abused. The danger lies in the possibility that the 
bootstrap estimates of accuracy, so easily produced, might 
be accepted uncritically.”



  

J. Grahl et al. / Nuclear Instruments and Methods in Physics Research A 504 (2003) 44–47

Peter Hall  “The Bootstrap and Edgeworth Expansion” (1992)

Bradley Efron, Robert J. Tibshirani  “An Introduction to the Bootstrap” (1993)

Tim C. Hesterberg  “Bootstrap Tilting Diagnostics” (2001)

Student “The probable Error of a Mean” Biometrika, Volume 6, Issue 1 (Mar., 1908), 1-25.

 Bradley Efron “Jackknife-after-Bootstrap Standard Errors and Influence Functions” Journal of the Royal Statistical Society (1992), 54, No. 1, pp. 83-127

 B. Efron. "Bootstrap Methods: Another Look at the Jackknife." The Annals of Statistics, 7 (1) 1 - 26, January, 1979.



  

X1 , ... , Xn

Glivenko-Cantelli Theorem

Fn(x)=
1
n
∑
i=1

n

I (X i≤x)

are i.i.d. with distribution F

F is a cumulative distribution function

The empirical cumulative distribution function is
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Bootstrap samples

Data set
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A random number generator independently selects integers each of which equals any value between 1 and N with probability 1/N . These 
integers determine which observations are selected to be in the bootstrap sample. Some observations can appear more than once in the 
sample. Easy to see that a bootstrap sample contains approximately 2/3 unique observations of the original data set on average. For big 
data number of copies of each observation in a bootstrap sample is distributed by Poisson with Mean=1.    
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Glivenko-Cantelli Theorem

F is a cumulative distribution function.

Then    

X1 , ... , Xn are i.i.d. with distribution F.
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