Comparison of K_S^0 production in Pythia and FTF at \sqrt{S} =10 GeV.

Natalia Rogacheva

LHEP, JINR, Dubna

SPD Physics & MC meeting 19/02/2025

Event and track selection

Event sample

```
SpdRoot 4.1.7
GenerationN<sup>1</sup>: FTF (p+p) at \sqrt{5}=10 GeV.
GenerationN<sup>2</sup>: Pythia 8, (p+p) at \sqrt{5}=10 GeV, SoftQCD(MB).
```

4 000 000 events

V0 selection:

- **1** The primary vertex coordinates has a gaussian smearing with $\sigma_z = 30$ cm, $\sigma_x = \sigma_y = 0.1$ cm,
- 2 Daughters = $K^0(-211, 211), \Lambda(2212, -211), \overline{\Lambda}(-2212, 211);$ Bg = (321, -321), (-321, 211), (321, -211).

Sor track selection: minimum Its hits = 0; total minimum hits = 3.

- The track candidates were required to be well-fitted and to have a track fit χ^2 over the number of degrees of freedom less than 6 ($\chi^2/NDF < 6$).
- S Minimum χ^2_{V0} track to PV is less than 2.
- **6** Track extrapolation χ^2 is more than 10.
- Track fit is converged.

The collinearity cut

This cut selects V^0 events the momentum looking at the PV. $\theta_{coll} < 0.05 \text{ rad for } K_S^0 \text{ at } \sqrt{S} = 10 \text{ GeV}$ ($\theta_{coll} < 0.03 \text{ rad for } K^0 \text{ at } \sqrt{S} = 27 \text{ GeV}$).

▶ < ∃ >

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Distance between PV and SV (V0 vertex)

Cuts is helicity angle for selections K_S^0

A cut on the "helicity angle θ^* ", defined as the angle between the π^+ momentum vector in the K_S^0 , rest frame and the K_S^0 fligth direction, was used to remove the Λ and $\overline{\Lambda}$ contamination.

Invariant mass of K^0 for FTF and Pythia8 after all cuts

The shape of the K_S^0 signal was parametrized by double Gaussian and background was parametrized by the second order polynomial.

 $K_{\rm S}^0$ reconstruction study

19 February 2025 6 / 15

(B)

< 47 ▶

Pythia and FTF \sqrt{S} =10 GeV, $K^0 \pm 2\sigma$

Reconstruction data, FTF:

 K_{S}^{0} reconstruction study

Distributions of p and θ for Pythia8 and FTF \sqrt{S} =10 GeV (true)

19 February 2025 8/15

$(p, \theta), (x_F, p_T)$ and (y, p_T) phase space at \sqrt{S} =10 GeV(true)

Pure FTF (true), K_S^0 :

N. Rogacheva (SPD Physics & MC meeting)

 K_{S}^{0} reconstruction study

19 February 2025 9 / 15

Binning

The choice of the binning scheme is obtained from distribution of K^0 simulated in Pythia 8. It was done to have the similar number of K^0 in bins $(n_{bin}^{\theta} = 4, n_{bin}^{p} = 10)$.

Distributions of the K_S^0 candidates with all cuts in the binning scheme

FTF (Factorization of the MC correction)

 $C = \frac{N(RD)}{N(K_{true}^{0}(all))} = C1^{*} C2^{*}C3^{*}C4^{*}C5^{*}C6^{*}C7^{*}C8$

 $K_{\rm S}^0$ reconstruction study

19 February 2025 12 / 15

Pythia 8 (Factorization of the MC correction)

 $C = \frac{N(RD)}{N(K_{true}^{0}(all))} = C1^{*} C2^{*}C3^{*}C4^{*}C5^{*}C6^{*}C7^{*}C8$

 $K_{\rm S}^0$ reconstruction study

19 February 2025 13 / 15

Comparison of total reconstruction efficiency for FTF and Pythia8

$$\mathsf{C} = \frac{\mathsf{N}(\mathsf{RD})}{\mathsf{N}(\mathsf{K}^{0}_{true}(\mathit{all}))}$$

 $K_{\rm S}^0$ reconstruction study

Conclusion and TO DO

- Analysis of the K⁰_S reconstruction efficiency for different generators (Pythia8 and FTF) was performed.
- There are no difference in K_S^0 reconstruction efficiency as function of momentum and theta.
- Next step: Calculate reconstruction efficiency of the K⁰_S at √S=5 GeV. And compare reconstruction efficiency at different energies √S=5, 10, 27 GeV.

Thank you for your attention.