
mpdroot refactoring
Version 0.1 – 2025. 01. 24

Refactoring Timeline

Discussion on the topic of refactoring until the March release of mpdroot (25.03.25). Early march opening
milestone+issues in git with detailed description of changes. Implementation during april 2025 (after
MPD meeting), exept for 6, 7, 8, and 9 which can be done on an ongoing basis. Affecting whole code
base, it is better to do whole refactoring in one large update rather than to split it in several months as
any class renaming will break all classes depending on it.

Expected Impacts

Negative: Since this refactoring concerns (almost) all libraries and classes names, all macros will stop
working. We support only 2 macros (runReco.C, runMC.C) and this should have not large impact on us.
It is expected, that opening old root files will produce warnings on load. Naturally old user’s macros will
stop working we can prepare short guide for those willing to read.
Positive: We will be able to reuse same file names for the same type of tasks on multiple detectors. We
will be able to build (link) against latest FairRoot (18.8.2 or 19.0.0). We should get rid of problems when
multiple loading of the same library in ROOT unloads most of other libraries. We will fix problem of
build+installation when during build headers are looked for in subdirectories but during runtime mpdroot
expects libraries to be in the main directory thus forcing to copy libraries during install to two different
locations (manually). Unification of codebase allows us further to force programming house style.

Contents

1 Libraries Renaming 2

2 Library Merging 2

3 Directory Structure Change 2

4 Examples and Macros 3

5 Classes Renaming 3

6 Virtual Classes 3

7 Guard Rails 3

8 Removing cout, cerr 3

9 ClassImp 3

10 mpdPassive 3

11 CMake + New Library Versioning 5

12 MpdGeneratorType 5

13 Remove Dead Detectors 5

14 Copyright Notice 5

1

1 Libraries Renaming

All library names will start with Mpd as is a standard in Linux. Following list is only about the names
of libraries, not the classes they provide.
Renaming concerns 25 out of current 59 libraries.

name

current new

MpdBase
MpdDst
MpdMiniEvent
MpdField
Passive MpdPassive
MpdPid
Bbc MpdBbc
Emc MpdEmc
Etof MpdEtof
Ffd MpdFfd
Bmd MpdBmd
Mcord MpdMcord
Lusi MpdLusi
multi MpdMulti
Sts MpdSts
Tof MpdTof
tpc MpdTpc
tpcAlignment MpdTpcAlignment
tpcClusterHitFinder MpdTpcClusterHitFinder
tpcDigitizer MpdTpcDigitizer
tpcFairTpc MpdTpcFairTpc
tpcGeometry MpdTpcGeometry
tpcPid MpdTpcPid
MpdTpcActsTracker
Zdc MpdZdc
MpdDielectrons
MpdCentralityAll
MpdFlowEventPlane
MpdPIDAll
MpdEventPlaneAll
MpdFsiTools
MpdFemtoMaker
MpdFemtoMakerUser
MpdCumulantAnalysis

name

current new

MpdFluctPt
MpdPtMultAnalysis
MpdPtAnalysis
MpdPTNFluctCorr
MpdGlobalPolarization
Hyperons MpdHyperons
MpdPhysics
NicaMpdCuts MpdCuts
NicaMpdFormat MpdFormat
NicaMpdHelper MpdHelper
NicaMpdTasks MpdTasks
MpdNuclei
MpdPairGGTracks
MpdPairGLambdaTracks
MpdPairKKTracks
MpdPairPiKTracks
MpdPairPiKsTracks
MpdPairPiLambdaTracks
MpdPairPiPiTracks
MpdPairPKTracks
MpdPhotons
Kalman MpdKalman
LHETrack MpdLHETrack
MpdGenFactory MpdGeneratorFactory
MpdGen MpdGenerator
MpdGeneralGenerator
UniGenFormat MpdUniGenFormat
MpdMcDst MpdMCDst
MpdMCStack
DbUtils MpdDbUtils
UniCommon MpdUniCommon
UniDb MpdUniDb
EventDisplay MpdEventDisplay
QA MpdQA

2 Library Merging

We have many small libraries providing mpdroot’s functionality leading to complicated inter-library
dependencies. It would be beneficial to merge these to more complex libraries. For instance MpdBase,
MpdField, MpdPassive, and MpdPid could create together MpdCore library. MpdMiniEvent as a stand-
alone library should be be a part of Core. MpdDst being dependent of large portions of MpdRoot should
not be a part of Core as well. By the same logic we can talk about MpdTpc containing functionality s.a.
MpdTpc, MpdTpcAlignment, MpdTpcClusterHitFinder, MpdTpcDigitizer, MpdTpcFairTpc (why Fair
and 2× Tpc?), MpdTpcGeometry, and MpdTpcPid.

3 Directory Structure Change

The main reason to the directory structure change are 3 problems. No possibility to use the same (header)
file name multiple times since headers are copied in single directory during the install and problem with
proper including of headers inside sub-directories. This leads to the necessity during the install to keep 2
copies of headers. One inside the main folder and second one inside the proper sub-directory. It became
a common approach that includes of libraries are (at least) inside the directory with the project name.
To solve all 3 problems we will move headers into external directory called include (see Fig. 1) that will
mirror the structure of include directory after install (e.g., include/Mpd/Core/Base) and inside cpp we

2

will use full paths to the headers (e.g., #include "Mpd/Core/Base/Base.h"). Source files will be placed
in a src directory.

4 Examples and Macros

Moving source files to the directories include and src (see Section 3) allows us to unify approach on
Examples and Macros. We can now put them to the corresponding subdirectories examples and macros

with similar directory structure as of the source files. Question is, whether we want this and if yes, on
which condition (build switch) macros and/or examples should be installed during build/installation and
to what place.

5 Classes Renaming

In classes naming, we should remove Mpd from classes names. Instead, all classes have to be contained
within the Mpd namespace (capital M, lowercase letters p and d). Files also may not contain Mpd in
their names. We will introduce also “second level” namespaces, e.g., Mpd::Tpc::SomeClass. This will
allow re-using SomeClass name for multiple detectors. Especially, if this class does the same but for
another detector. Since we include headers with full path, we won’t have clashes when using multiple
headers of the same name. List of all namespaces will be kept in separate file/documentation.

6 Virtual Classes

Instead of using preposition Abstract we will use (letter) I as in Interface. This is more common in the
programming world and it will make names of classes and files containing them less verbal (AbstractXXX.h
→ IXXX.h).

7 Guard Rails

While #infdef HEADER_INCLUDED works, it is probably better to switch to #pragma once which is more
fool-proof and does not lead to errors if two headers use same guard rail. While this pragma is not part
of a C++ standard, it is supported by all major compilers and there are no plans to remove it.

8 Removing cout, cerr

Even though it is part of our coding style, there are still many parts, where we use cout and cerr to print
out information to the screen. All such occurences should be replaced by usage of FairLogger as is stated
in the MPDroot Coding Convention (https://mpdroot.jinr.ru/mpdroot-naming-convention/). This
will allow to control the level of information provided during runs without the necessity to recompile
MpdRoot each time.

9 ClassImp

ClassImp has been deprecated in ROOT and should be removed from all source files.

10 mpdPassive

It is very similar to ExPassive library from FairRoot, there have been some modifications to the source
code (probably in FairRoot, rather than in MpdRoot). New files (FairCradle.(cxx|h)) have been added
but they don’t seem to be used anywhere. It is recommended to either rename all files (and contained
classes) removing Fair from their names and embedding classes into Mpd namespace or to remove Passive
and build FairRoot with examples enabled. Why isn’t FairCradle used anywhere? Or is it in some macros
which we don’t have? In our macros (geometry_stage1.C) is CRADLE derived from FairMagnet and
not from (our) FairCradle.

3

Current source files structure

/mpdroot

core

mpdBase

mpdDst

MpdMiniEvent

mpdField

mpdPassive

mpdPid

detectors

bbc

emc

etof

ffd

legacy

lusi

multi

sts

tof

tpc

zdc

physics

reconstruction

tracking

kalman

lheTrack

simulation

generators

genFactory

mpdGen

mpdGeneralGenerator

unigenFormat

tools

database

dbUtils

uniCommon

uniDb

eventDisplay

tdd

QA

Proposed files structure

/mpdroot

Core

include (.h)

Mpd

Core

Base

Dst

MiniEvent

Field

Passive

Pid

src (.cpp)

Base

Dst

MiniEvent

Field

Passive

Pid

Detectors

include

Mpd

Detectors

bbc

emc

etof

ffd

lusi

multi

sts

tof

tpc

Alignment

Muons

ClusterHitFinder

Fast

HitProducer

mlem

...

zdc

legacy

src (.cpp)

bbc

emc

tof

ffd

lusi

multi

sts

tof

tpc...

zdc

. . . structure continued

Physics

Reconstruction

include (.h)

Mpd

Reconstruction

Tracking

Kalman

lheTrack

src (.cpp)

Tracking

Kalman

lheTrack

Simulation

include (.h)

Mpd

Simulation

Generators

GenFactory

Gen

GeneralGenerator

UnigenFormat

src (.cpp)

Generators

GenFactory

Gen

GeneralGenerator

UnigenFormat

Tools

Documentation

include (.h)

Mpd

Tools

Database

DbUtils

UniComon

UniDb

EventDisplay

tdd

QA

src (.cpp)

Database

DbUtils

UniCommon

UniDb

EventDisplay

tdd

QA

Figure 1: Current and proposed directory structure

4

11 CMake + New Library Versioning

We will switch to target based builds, looking at FairRoot, it is recommended to call the targets
Mpd::${target}. It is also possible to use the form MpdRoot::${target}. So to link to our libraries, we
would use, e.g., set(DEPENDENCIES Mpd::Base) instead of just Base. This way we know, we are linking
Mpd::Base and not FairRoot::Base or ROOT::Base. Switching to this approach would also force us to
modify whole build system and allow us to switch to FairRoot 19.0.0. During this rebuild, we could
start our own library versioning since in current the mpdroot libraries number is connected only to the
FairRoot version without any information on mpdroot development progress (version).

12 MpdGeneratorType

Inside the file simulation/generators/genFactory/MpdGeneratorType.h there is an MpdGeneratorType
enum class. enum EGenerators located inside macros/common/runMC.C is virtually copy of it. It should
be removed and replaced by the one from MpdGeneratorType.h. Also in MpdPid.cxx we have generators,
this time identified by TString, it would be preferable to switch to enum class as well to have a single
place for generators identification.

13 Remove Dead Detectors

This is recurring topic. Detectors bbc, etof, ffd, and sts have not been touched in (at least) 2 years.
Question is if they are still legit or can be (re)moved to the legacy folder and removed from build.

14 Copyright Notice

We don’t have a unified approach to the copyright notice at the beginning of (all!) files. We should come
with a proper license text and add it to all files. Question is what type of license our code should use
(LGPL v3 as in FairROOT or maybe MPL/2.0 as in ACTS)? Does JINR have answer to such question?
Personally I like the FairRoot and the ACTS license messages the best. After the license text can come
line with the author of individual file if we wan’t to show programmer’s credits (and imply his/hers
responsibility).
FairRoot:

/**

* Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH *

* *

* This software is distributed under the terms of the *

* GNU Lesser General Public Licence (LGPL) version 3, *

* copied verbatim in the file "LICENSE" *

**/

ROOT:

/***

* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *

* All rights reserved. *

* *

* For the licensing terms see $ROOTSYS/LICENSE. *

* For the list of contributors see $ROOTSYS/README/CREDITS. *

***/

ACTS:

// This file is part of the ACTS project.

//

// Copyright (C) 2016 CERN for the benefit of the ACTS project

//

// This Source Code Form is subject to the terms of the Mozilla Public

// License, v. 2.0. If a copy of the MPL was not distributed with this

// file, You can obtain one at https://mozilla.org/MPL/2.0/.

5

GEANT4

//

// **

// * License and Disclaimer *

// * *

// * The Geant4 software is copyright of the Copyright Holders of *

// * the Geant4 Collaboration. It is provided under the terms and *

// * conditions of the Geant4 Software License, included in the file *

// * LICENSE and available at http://cern.ch/geant4/license . These *

// * include a list of copyright holders. *

// * *

// * Neither the authors of this software system, nor their employing *

// * institutes,nor the agencies providing financial support for this *

// * work make any representation or warranty, express or implied, *

// * regarding this software system or assume any liability for its *

// * use. Please see the license in the file LICENSE and URL above *

// * for the full disclaimer and the limitation of liability. *

// * *

// * This code implementation is the result of the scientific and *

// * technical work of the GEANT4 collaboration. *

// * By using, copying, modifying or distributing the software (or *

// * any work based on the software) you agree to acknowledge its *

// * use in resulting scientific publications, and indicate your *

// * acceptance of all terms of the Geant4 Software license. *

// **

//

6

	Libraries Renaming
	Library Merging
	Directory Structure Change
	Examples and Macros
	Classes Renaming
	Virtual Classes
	Guard Rails
	Removing cout, cerr
	ClassImp
	mpdPassive
	CMake + New Library Versioning
	MpdGeneratorType
	Remove Dead Detectors
	Copyright Notice

\documentclass{article}

\usepackage{hyperref}
\usepackage{embedfile}
\embedfile{\jobname.tex}

\textwidth=160mm
\textheight=250mm
\addtolength{\oddsidemargin}{-25mm}
\addtolength{\topmargin}{-30mm}

%\usepackage[dvipsnames]{xcolor}

\usepackage{dirtree}
\usepackage{comment}
%\pagestyle{empty}

\setlength{\parindent}{0mm}

%\def\del#1{\textcolor{red}{#1}}
%\def\move#1{\textcolor{blue}{#1}}
%\def\new#1{\textcolor{OliveGreen}{#1}}

\begin{document}

\begin{center}
{\huge\bf
mpdroot refactoring}

\bigskip

Version 0.1 -- 2025.\,01.\,24
\end{center}

\bigskip

\section*{Refactoring Timeline}

Discussion on the topic of refactoring until the March release of mpdroot (25.03.25). Early march opening milestone+issues in git with detailed description of changes. Implementation during april 2025 (after MPD meeting), exept for \ref{sec:VirtualClasses}, \ref{sec:GuardRails}, \ref{sec:RemovingCoutCerr}, and \ref{sec:ClassImp} which can be done on an ongoing basis. Affecting whole code base, it is better to do whole refactoring in one large update rather than to split it in several months as any class renaming will break all classes depending on it.

\section*{Expected Impacts}

Negative: Since this refactoring concerns (almost) all libraries and classes names, all macros will stop working. We support only 2 macros (\verb|runReco.C|, \verb|runMC.C|) and this should have not large impact on us. It is expected, that opening old root files will produce warnings on load. Naturally old user's macros will stop working we can prepare short guide for those willing to read.

Positive: We will be able to reuse same file names for the same type of tasks on multiple detectors. We will be able to build (link) against latest FairRoot (18.8.2 or 19.0.0). We should get rid of problems when multiple loading of the same library in ROOT unloads most of other libraries. We will fix problem of build+installation when during build headers are looked for in subdirectories but during runtime mpdroot expects libraries to be in the main directory thus forcing to copy libraries during install to two different locations (manually). Unification of codebase allows us further to force programming house style.

\tableofcontents

\pagebreak

\section{Libraries Renaming}

All library names will start with Mpd as is a standard in Linux. Following list is only about the names of libraries, not the classes they provide.

Renaming concerns 25 out of current 59 libraries.

\begin{minipage}{0.45\textwidth}
\small
\begin{tabular}{|l|l|}
\hline
\multicolumn{2}{|c|}{name} \\ \hline
current & new \\
\hline
MpdBase & \\
MpdDst & \\
MpdMiniEvent & \\
MpdField & \\
Passive & MpdPassive \\
MpdPid & \\
Bbc & MpdBbc \\
Emc & MpdEmc \\
Etof & MpdEtof \\
Ffd & MpdFfd \\
Bmd & MpdBmd \\
Mcord & MpdMcord \\
Lusi & MpdLusi \\
multi & MpdMulti \\
Sts & MpdSts \\
Tof & MpdTof \\
tpc & MpdTpc \\
tpcAlignment & MpdTpcAlignment \\
tpcClusterHitFinder & MpdTpcClusterHitFinder \\
tpcDigitizer & MpdTpcDigitizer \\
tpcFairTpc & MpdTpcFairTpc \\
tpcGeometry & MpdTpcGeometry \\
tpcPid & MpdTpcPid \\
MpdTpcActsTracker & \\
Zdc & MpdZdc \\
MpdDielectrons & \\
MpdCentralityAll & \\
MpdFlowEventPlane & \\
MpdPIDAll & \\
MpdEventPlaneAll & \\
MpdFsiTools & \\
MpdFemtoMaker & \\
MpdFemtoMakerUser & \\
MpdCumulantAnalysis & \\ \hline
\end{tabular}\end{minipage} \hfil
\begin{minipage}{0.45\textwidth}
\small
\begin{tabular}{|l|l|}
\hline
\multicolumn{2}{|c|}{name} \\ \hline
current & new \\
\hline
MpdFluctPt & \\
MpdPtMultAnalysis & \\
MpdPtAnalysis & \\
MpdPTNFluctCorr & \\
MpdGlobalPolarization & \\
Hyperons & MpdHyperons \\
MpdPhysics & \\
NicaMpdCuts & MpdCuts \\
NicaMpdFormat & MpdFormat \\
NicaMpdHelper & MpdHelper \\
NicaMpdTasks & MpdTasks \\
MpdNuclei & \\
MpdPairGGTracks & \\
MpdPairGLambdaTracks & \\
MpdPairKKTracks & \\
MpdPairPiKTracks & \\
MpdPairPiKsTracks & \\
MpdPairPiLambdaTracks & \\
MpdPairPiPiTracks & \\
MpdPairPKTracks & \\
MpdPhotons & \\
Kalman & MpdKalman \\
LHETrack & MpdLHETrack \\
MpdGenFactory & MpdGeneratorFactory \\
MpdGen & MpdGenerator \\
MpdGeneralGenerator & \\
UniGenFormat & MpdUniGenFormat \\
MpdMcDst & MpdMCDst \\
MpdMCStack & \\
DbUtils & MpdDbUtils \\
UniCommon & MpdUniCommon \\
UniDb & MpdUniDb \\
EventDisplay & MpdEventDisplay \\
QA & MpdQA \\ \hline
\end{tabular}
\end{minipage} \newline

\section{Library Merging}

We have many small libraries providing mpdroot's functionality leading to complicated inter-library dependencies. It would be beneficial to merge these to more complex libraries. For instance MpdBase, MpdField, MpdPassive, and MpdPid could create together MpdCore library. MpdMiniEvent as a stand-alone library should be be a part of Core. MpdDst being dependent of large portions of MpdRoot should not be a part of Core as well. By the same logic we can talk about MpdTpc containing functionality s.a. MpdTpc, MpdTpcAlignment, MpdTpcClusterHitFinder, MpdTpcDigitizer, MpdTpcFairTpc (why Fair and $2\times$ Tpc?), MpdTpcGeometry, and MpdTpcPid.

\section{Directory Structure Change}\label{sec:DirectoryStructureChange}

The main reason to the directory structure change are 3 problems. No possibility to use the same (header) file name multiple times since headers are copied in single directory during the install and problem with proper including of headers inside sub-directories. This leads to the necessity during the install to keep 2 copies of headers. One inside the main folder and second one inside the proper sub-directory. It became a common approach that includes of libraries are (at least) inside the directory with the project name. To solve all 3 problems we will move headers into external directory called \verb|include| (see Fig.~\ref{fig:directories}) that will mirror the structure of include directory after install (e.g., \verb|include/Mpd/Core/Base|) and inside cpp we will use full paths to the headers (e.g., \verb|#include "Mpd/Core/Base/Base.h"|). Source files will be placed in a \verb|src| directory.

\bigskip

\begin{figure}
\begin{minipage}[t]{0.3\textwidth}
\footnotesize
Current source files structure

\dirtree{%
.1 /mpdroot.
.2 core.
.3 mpdBase.
.3 mpdDst.
.4 MpdMiniEvent.
.3 mpdField.
.3 mpdPassive.
.3 mpdPid.
.2 detectors.
.3 bbc.
.3 emc.
.3 etof.
.3 ffd.
.3 legacy.
.3 lusi.
.3 multi.
.3 sts.
.3 tof.
.3 tpc.
.3 zdc.
.2 physics.
.2 reconstruction.
.3 tracking.
.4 kalman.
.4 lheTrack.
.2 simulation.
.3 generators.
.4 genFactory.
.4 mpdGen.
.4 mpdGeneralGenerator.
.4 unigenFormat.
.2 tools.
.3 database.
.4 dbUtils.
.4 uniCommon.
.4 uniDb.
.3 eventDisplay.
.3 tdd.
.4 QA.
}
\end{minipage}
\begin{minipage}[t]{0.3\textwidth}
\footnotesize

Proposed files structure

\dirtree{%
.1 /mpdroot.
.2 Core.
.3 include (.h).
.4 Mpd.
.5 Core.
.6 Base.
.6 Dst.
.6 MiniEvent.
.6 Field.
.6 Passive.
.6 Pid.
.3 src (.cpp).
.4 Base.
.4 Dst.
.4 MiniEvent.
.4 Field.
.4 Passive.
.4 Pid.
.2 Detectors.
.3 include.
.4 Mpd.
.5 Detectors.
.6 bbc.
.6 emc.
.6 etof.
.6 ffd.
.6 lusi.
.6 multi.
.6 sts.
.6 tof.
.6 tpc.
.7 Alignment.
.8 Muons.
.7 ClusterHitFinder.
.8 Fast.
.8 HitProducer.
.8 mlem.
.7 \dots.
.6 zdc.
.3 legacy.
.3 src (.cpp).
.4 bbc.
.4 emc.
.4 tof.
.4 ffd.
.4 lusi.
.4 multi.
.4 sts.
.4 tof.
.4 tpc\dots .
.4 zdc.
}
\end{minipage}\hfill
\begin{minipage}[t]{0.3\textwidth}
\footnotesize

\dots structure continued

\dirtree{%
.1 .
.2 Physics.
.2 Reconstruction.
.3 include (.h).
.4 Mpd.
.5 Reconstruction.
.6 Tracking.
.7 Kalman.
.7 lheTrack.
.3 src (.cpp).
.4 Tracking.
.5 Kalman.
.5 lheTrack.
.2 Simulation.
.3 include (.h).
.4 Mpd.
.5 Simulation.
.6 Generators.
.7 GenFactory.
.7 Gen.
.7 GeneralGenerator.
.7 UnigenFormat.
.3 src (.cpp).
.4 Generators.
.5 GenFactory.
.5 Gen.
.5 GeneralGenerator.
.5 UnigenFormat.
.2 Tools.
.3 Documentation.
.3 include (.h).
.4 Mpd.
.5 Tools.
.6 Database.
.7 DbUtils.
.7 UniComon.
.7 UniDb.
.6 EventDisplay.
.6 tdd.
.7 QA.
.3 src (.cpp).
.4 Database.
.5 DbUtils.
.5 UniCommon.
.5 UniDb.
.4 EventDisplay.
.4 tdd.
.5 QA.
}
\end{minipage} \linebreak
\caption{Current and proposed directory structure}\label{fig:directories}
\end{figure}

\section{Examples and Macros}

Moving source files to the directories \verb|include| and \verb|src| (see Section~\ref{sec:DirectoryStructureChange}) allows us to unify approach on Examples and Macros. We can now put them to the corresponding subdirectories \verb|examples| and \verb|macros| with similar directory structure as of the source files. Question is, whether we want this and if yes, on which condition (build switch) macros and/or examples should be installed during build/installation and to what place.

\section{Classes Renaming}

In classes naming, we should remove Mpd from classes names. Instead, all classes have to be contained within the Mpd namespace (capital M, lowercase letters p and d). Files also may not contain Mpd in their names. We will introduce also ``second level'' namespaces, e.g., Mpd::Tpc::SomeClass. This will allow re-using SomeClass name for multiple detectors. Especially, if this class does the same but for another detector. Since we include headers with full path, we won't have clashes when using multiple headers of the same name. List of all namespaces will be kept in separate file/documentation.

\section{Virtual Classes}\label{sec:VirtualClasses}

Instead of using preposition Abstract we will use (letter) I as in Interface. This is more common in the programming world and it will make names of classes and files containing them less verbal (\verb|AbstractXXX.h| \rightarrow \verb|IXXX.h|).

\section{Guard Rails}\label{sec:GuardRails}

While \verb|#infdef HEADER_INCLUDED| works, it is probably better to switch to \verb|#pragma once| which is more fool-proof and does not lead to errors if two headers use same guard rail. While this pragma is not part of a C++ standard, it is supported by all major compilers and there are no plans to remove it.

\section{Removing cout, cerr}\label{sec:RemovingCoutCerr}

Even though it is part of our coding style, there are still many parts, where we use cout and cerr to print out information to the screen. All such occurences should be replaced by usage of FairLogger as is stated in the MPDroot Coding Convention (\verb|https://mpdroot.jinr.ru/mpdroot-naming-convention/|). This will allow to control the level of information provided during runs without the necessity to recompile MpdRoot each time.

\section{ClassImp}\label{sec:ClassImp}

ClassImp has been deprecated in ROOT and should be removed from all source files.

\section{mpdPassive}

It is very similar to ExPassive library from FairRoot, there have been some modifications to the source code (probably in FairRoot, rather than in MpdRoot). New files (\verb+FairCradle.(cxx|h)+) have been added but they don't seem to be used anywhere. It is recommended to either rename all files (and contained classes) removing Fair from their names and embedding classes into Mpd namespace or to remove Passive and build FairRoot with examples enabled. Why isn't FairCradle used anywhere? Or is it in some macros which we don't have? In our macros (\verb+geometry_stage1.C+) is CRADLE derived from FairMagnet and not from (our) FairCradle.

\section{CMake + New Library Versioning}

We will switch to target based builds, looking at FairRoot, it is recommended to call the targets \verb|Mpd::${target}|. It is also possible to use the form \verb|MpdRoot::${target}|. So to link to our libraries, we would use, e.g., \verb|set(DEPENDENCIES Mpd::Base)| instead of just Base. This way we know, we are linking Mpd::Base and not FairRoot::Base or ROOT::Base. Switching to this approach would also force us to modify whole build system and allow us to switch to FairRoot 19.0.0. During this rebuild, we could start our own library versioning since in current the mpdroot libraries number is connected only to the FairRoot version without any information on mpdroot development progress (version).

\section{MpdGeneratorType}

Inside the file \verb|simulation/generators/genFactory/MpdGeneratorType.h| there is an MpdGeneratorType enum class. enum EGenerators located inside
\verb|macros/common/runMC.C| is virtually copy of it. It should be removed and replaced by the one from \verb|MpdGeneratorType.h|. Also in \verb|MpdPid.cxx| we have generators, this time identified by TString, it would be preferable to switch to enum class as well to have a single place for generators identification.

\section{Remove Dead Detectors}

This is recurring topic. Detectors \verb|bbc|, \verb|etof|, \verb|ffd|, and \verb|sts| have not been touched in (at least) 2 years. Question is if they are still legit or can be (re)moved to the legacy folder and removed from build.

\section{Copyright Notice}

We don't have a unified approach to the copyright notice at the beginning of (all!) files. We should come with a proper license text and add it to all files. Question is what type of license our code should use (LGPL v3 as in FairROOT or maybe MPL/2.0 as in ACTS)? Does JINR have answer to such question?
Personally I like the FairRoot and the ACTS license messages the best. After the license text can come line with the author of individual file if we wan't to show programmer's credits (and imply his/hers responsibility).

FairRoot:
\begin{verbatim}
/**
 * Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH *
 * *
 * This software is distributed under the terms of the *
 * GNU Lesser General Public Licence (LGPL) version 3, *
 * copied verbatim in the file "LICENSE" *
 **/
\end{verbatim}

ROOT:
\begin{verbatim}
/***
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
 * All rights reserved. *
 * *
 * For the licensing terms see $ROOTSYS/LICENSE. *
 * For the list of contributors see $ROOTSYS/README/CREDITS. *
 ***/
\end{verbatim}

ACTS:
\begin{verbatim}
 // This file is part of the ACTS project.
 //
 // Copyright (C) 2016 CERN for the benefit of the ACTS project
 //
 // This Source Code Form is subject to the terms of the Mozilla Public
 // License, v. 2.0. If a copy of the MPL was not distributed with this
 // file, You can obtain one at https://mozilla.org/MPL/2.0/.
\end{verbatim}

GEANT4
\begin{verbatim}
 //
 // **
 // * License and Disclaimer *
 // * *
 // * The Geant4 software is copyright of the Copyright Holders of *
 // * the Geant4 Collaboration. It is provided under the terms and *
 // * conditions of the Geant4 Software License, included in the file *
 // * LICENSE and available at http://cern.ch/geant4/license . These *
 // * include a list of copyright holders. *
 // * *
 // * Neither the authors of this software system, nor their employing *
 // * institutes,nor the agencies providing financial support for this *
 // * work make any representation or warranty, express or implied, *
 // * regarding this software system or assume any liability for its *
 // * use. Please see the license in the file LICENSE and URL above *
 // * for the full disclaimer and the limitation of liability. *
 // * *
 // * This code implementation is the result of the scientific and *
 // * technical work of the GEANT4 collaboration. *
 // * By using, copying, modifying or distributing the software (or *
 // * any work based on the software) you agree to acknowledge its *
 // * use in resulting scientific publications, and indicate your *
 // * acceptance of all terms of the Geant4 Software license. *
 // **
 //
\end{verbatim}
\end{document}

