Physics at future e⁺e⁻ colliders

Igor Boyko (DLNP)

Higgs discovery: success of experiment, triumph of theory

End of physics?

- With the discovery of Higgs boson, Standard Model is now complete
- Does it mean that now we fully understand the structure of Nature?
- It seems very unlikely

Leptons spin = 1/2			Quarks spin = 1/2			Unified Electroweak spin = 1			
Flavor	Mass GoV/c ²	Electric	Flavor	Approx. Mass	Electric	Name	Mass GeV/c ²	Electric charge	
	Gev/C-	charge		GeV/c ²	charge	Ŷ	0	0	
ν_e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	W ⁻	80.4	-1	
e electron	0.000511	-1	d down	0.006	-1/3	W+	80.4	+1	
ν_{μ} muon neutrino	< 0.0002	0	C charm	1.3	2/3	Z°	91.187	0	
μ muon	0.106	-1	S strange	0.1	-1/3	Strong	Strong (color) spin = 1		
v_{τ} tau	<0.02	0	t top	175	2/3	Name	Mass GeV/c ²	charge	
au tau	1.7771	-1	b bottom	4.3	-1/3	g gluon	0	0	

Still many puzzles remain

- Masses of charged fermions are GeVs, masses of neutrinos are milli-eVs
- Who would believe that this happened randomly, just by tossing a coin?
- Electroweak scale is 10², Plank scale is 10¹⁹
- Clearly, the Nature is trying to send us a message...
- ...but we still have to decode this message!

LHC: no hint of new physics so far

A	ATLAS SUSY Searches* - 95% CL Lower LimitsATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeVDecember 2017 $\sqrt{s} = 7, 8, 13$ TeV								
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8$	B TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \overline{q} q, \overline{q} \rightarrow q k_1^{P_1} \\ \overline{q} q, \overline{q} \rightarrow q k_1^{P_1} (\text{compressed}) \\ \overline{g} k_1^{P_1} = q k_1^{P_1} \\ \overline{g} k_2^{P_1} = q q (\ell r k_1^{P_1}) \\ \overline{g} k_2^{P_1} = q q (\ell r k_1^{P_1}) \\ \overline{g} k_2^{P_2} = q q (\ell r k_1^{P_1}) \\ \overline{g} k_2^{P_2} = q q q \ell r k_1^{P_1} \\ \overline{g} k_2^{P_2} = q q \ell r k_1^{P_1} \\ \overline{g} k_2^{P_2} = q q \ell r k_1^{P_1} \\ \overline{g} k_2^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q q \ell r k_1^{P_2} \\ \overline{g} k_1^{P_2} = q \ell k_1^{P_2} \\ \overline{g} k_1^{P_2} = q \ell \ell k_1^{P_2} \\ \overline{g} k_1^{P_2} \\ \overline{g} k_1^{P_2} = q \ell k_1^{P_2} \\ \overline{g} k_1^{P_2}$	$\begin{matrix} 0 \\ mono-jet \\ 0 \\ 0 \\ ee, \mu\mu \\ 3 \\ e, \mu \\ 0 \\ 1-2 \\ \tau + 0-1 \\ \ell \\ 2 \\ \gamma \\ 0 \end{matrix}$	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	q q q q q q g k <t< td=""><td>1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.87 TeV 2.0 TeV 2.15 Te 2.05 TeV</td><td>$\begin{split} & m(\tilde{x}_{1}^{2}) - 2000 GeV, \ m(1^{14} \underline{gen}, \tilde{q}) - m(2^{244} \underline{gen}, \tilde{q}) \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - 200 GeV, \ m(\tilde{x}_{1}^{2}) - D S(m(\tilde{x}_{1}^{2}) + m(\tilde{g})) \\ & m(\tilde{x}_{1}^{2}) - 200 GeV \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - SS(GeV) \\ & m(\tilde{x}_{1}^{2}) - SS(GeV) - O.1 mm, \mu_{2} O \\ & m(\tilde{x}_{1}^{2}) - ST(GeV + eV(N;SP) - O.1 mm, \mu_{2} O \\ & m(\tilde{x}_{1}^{2}) - ST(GeV + eV(m(\tilde{x}_{1}^{2}) - m(\tilde{q})) - ST(SF) \\ \end{split} \end{split}$</td><td>1712.02332 1711.03301 1712.02332 1712.02332 1811.05791 1706.03731 1706.03731 1706.7294 1607.05979 ATLAS-COMF-2017-080 1502.01518</td></t<>	1.57 TeV 2.02 TeV 2.01 TeV 1.7 TeV 1.87 TeV 1.87 TeV 2.0 TeV 2.15 Te 2.05 TeV	$\begin{split} & m(\tilde{x}_{1}^{2}) - 2000 GeV, \ m(1^{14} \underline{gen}, \tilde{q}) - m(2^{244} \underline{gen}, \tilde{q}) \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - 200 GeV, \ m(\tilde{x}_{1}^{2}) - D S(m(\tilde{x}_{1}^{2}) + m(\tilde{g})) \\ & m(\tilde{x}_{1}^{2}) - 200 GeV \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - GS(GeV) \\ & m(\tilde{x}_{1}^{2}) - SS(GeV) \\ & m(\tilde{x}_{1}^{2}) - SS(GeV) - O.1 mm, \mu_{2} O \\ & m(\tilde{x}_{1}^{2}) - ST(GeV + eV(N;SP) - O.1 mm, \mu_{2} O \\ & m(\tilde{x}_{1}^{2}) - ST(GeV + eV(m(\tilde{x}_{1}^{2}) - m(\tilde{q})) - ST(SF) \\ \end{split} \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1811.05791 1706.03731 1706.03731 1706.7294 1607.05979 ATLAS-COMF-2017-080 1502.01518
g med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0 0-1 <i>e</i> ,μ	3 b 3 b	Yes Yes	36.1 36.1	ř ř	1.92 TeV 1.97 TeV	m(𝔅˜1)<600 GeV m(𝔅˜1)<200 GeV	1711.01901 1711.01901
3 rd gen. squarks direct production	$ \begin{array}{l} \overline{b}_1 \overline{b}_1 \to \overline{b}_1 \to b \overline{k}_1^0 \\ \overline{b}_1 \overline{b}_1 \to b \overline{k}_1^0 \\ \overline{h}_1 \overline{b}_1 \to b \overline{k}_1^0 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \to c \overline{h}_1^0 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_2 \overline{h}_1 \overline{h}_2 \\ \overline{h}_2 \overline{h}_2 \overline{h}_2 \overline{h}_1 \overline{h}_1 \\ \overline{h}_2 \overline{h}_1 \overline{h}_2 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \overline{h}_1 \\ \overline{h}_1 \overline{h}_$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0 \ -2 \ e, \mu \\ 0 \ -2 \ e, \mu \end{array} \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ -2 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 a mono-jet 1 b 1 b 4 b	Yes Yes 4 Yes 2 Yes Yes Yes Yes Yes	36.1 36.1 .7/13.3 0.3/36.1 36.1 20.3 36.1 36.1 36.1	bi 950 GeV bi 275-700 GeV i 177-170 GeV i 200-720 GeV i 90-198 GeV i 90-430 GeV i 150-600 GeV i 150-600 GeV i 290-790 GeV i 320-880 GeV		$\begin{split} m(\tilde{t}^{0}_{1}) &< 420 \text{GeV} \\ m(\tilde{t}^{0}_{1}) &< 200 \text{GeV}, m(\tilde{t}^{0}_{1}) &= m(\tilde{t}^{0}_{1}) + 100 \text{GeV} \\ m(\tilde{t}^{0}_{1}) &= m(\tilde{t}^{0}_{1}), m(\tilde{t}^{0}_{1}) - 55 \text{GeV} \\ m(\tilde{t}^{0}_{1}) + 1 \text{GeV} \\ m(\tilde{t}^{0}_{1}) + 10 \text{GeV} \\ m(\tilde{t}^{0}_{1}) - 0 \text{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONR-2016-077 1506.08616, 1709.04183, 1711.11520 1711.113301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{array}{l} \tilde{t}_{1,k}\tilde{t}_{1,k}, \tilde{t} \rightarrow \ell \tilde{x}_1^0 \\ \tilde{x}_1\tilde{x}_1, \tilde{x}_1 \rightarrow \ell v(\tilde{x}) \\ \tilde{x}_1\tilde{x}_1, \tilde{x}_1 \rightarrow \ell v(\tilde{x}) \\ \tilde{x}_1^{\dagger}\tilde{x}_1^{\dagger}\sigma_{2,k}, \tilde{t}_1 \rightarrow \ell v(\tilde{x}) \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow \tilde{t}_1 v_{\ell,k}^{\dagger}(\ell(\tilde{y}), \ell \tilde{x}_{\ell,k}^{\dagger}(\ell(\tilde{y})) \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger}\tilde{x}_2^{\dagger} \rightarrow W_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger} \rightarrow \tilde{x}_1^{\dagger}\tilde{x}_1^{\dagger} \\ \tilde{x}_1^{\dagger} \rightarrow \tilde{x}_1^$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \\ \phi \\ \sigma \\ 1 \ e, \mu + \gamma \\ \sigma \\ 2 \ \gamma \end{array}$	0 0 - 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	λ 90-500 GeV \tilde{x}_1^a 750 GeV \tilde{x}_1^a 760 GeV \tilde{x}_1^a 560 GeV \tilde{x}_1^a 580 GeV \tilde{x}_1^a 580 GeV \tilde{x}_1^a 580 GeV \tilde{x}_2^a 685 GeV \tilde{x}_2^a 635 GeV \tilde{w} 1.06 TeV	eV m($\tilde{k}_1^\pm)=i$ m($\tilde{k}_2^0)=i$	$\begin{split} m(\tilde{\xi}_{1}^{0}) &= 0 \\ m(\tilde{\xi}_{1}^{0}) &= 0, m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0})) \\ m(\tilde{\xi}_{1}^{0}) &= 0, m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0})) \\ m(\tilde{\xi}_{1}^{0}) &= 0, m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) + n(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_{1}^{0}) \\ m(\tilde{\xi}_$	ATLAS.CONF-2017-039 ATLAS.CONF-2017-039 1708/07675 ATLAS.CONF-2017-039 ATLAS.CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS.CONF-2017-000
Long-lived particles	Direct $\tilde{x}_1^+ \tilde{x}_1^-$ prod., long-lived \tilde{x}_1^+ Direct $\tilde{x}_1^+ \tilde{x}_1^-$ prod., long-lived \tilde{x}_1^- Stable, stoped & R-hadron Stable \tilde{g} R-hadron Metastable g R-hadron, $\tilde{g} \rightarrow q \tilde{q}_1^0$ GMSB, stable $\tau, \tilde{t}_1^0 \rightarrow \tilde{\tau}(\tilde{a}, \tilde{a}) \rightarrow \tau(\epsilon, \mu)$ GMSB, $\tilde{x}_1^0 \rightarrow q \tilde{c}$, long-lived \tilde{x}_1^0 $\tilde{g}, \tilde{x}_1^0 \rightarrow q \tilde{c}$, long-lived \tilde{x}_1^0	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx 1-2 µ 2 γ displ. ee/eµ/µ	1 jet - 1-5 jets - - - - - - μ -	Yes Yes - Yes - Yes - Yes	36.1 18.4 27.9 3.2 32.8 19.1 20.3 20.3	X ¹ 460 GeV X ² 495 GeV B 850 GeV B 850 GeV B 850 GeV X ² 537 GeV X ² 440 GeV X ² 1.0 TeV	1.58 TeV 1.57 TeV 2.37	$\begin{split} m(\tilde{c}_1^3) & m(\tilde{c}_1^3) - 160 \; \text{MeV}, \tau(\tilde{c}_1^3) - 0.2 \; ns \\ m(\tilde{c}_1^3) - m(\tilde{c}_1^3) - 160 \; \text{MeV}, \tau(\tilde{c}_1^3) - 150 \; \text{m} \\ m(\tilde{c}_1^3) - 100 \; \text{GeV}, 10\; \mu_{\text{SF}} - \tau(g) \\ m(\tilde{c}_1^3) - 100 \; \text{GeV}, 10\; \mu_{\text{SF}} - \tau(g) \\ m(\tilde{c}_1^3) - 100\; \text{GeV}, 10\; \text{m} \\ m(\tilde{c}_1^3) - 10\; \text{m} \\ m$	1712.02118 1506.05322 1310.6554 1606.05129 1604.04520 1771.0.04901 1411.6795 1409.5542 1504.05162
ЧН	$ \begin{array}{l} LFV pp \!$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4- 1 e, μ 8 1 e, μ 8 0 2 e, μ		Yes Yes Yes hts - b - b -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	φ. σ.	1.9 TeV 1.45 TeV reV 1.875 TeV 2.1 TeV 1.65 TeV 4-1.45 TeV	$\begin{split} & \mathcal{X}_{311}^{*}=0.11, \mathcal{X}_{332,733,723}=0.07 \\ & m(\partial_{t})=m(\partial_{t}), c_{77,87}<1mm \\ & m(\partial_{t}^{*})=0.06GeV, \mathcal{X}_{132}=0 \\ & m(\partial_{t}^{*})=0.2m(\partial_{t}^{*}), \mathcal{X}_{132}=0 \\ & m(\partial_{t}^{*})=1.16V, \mathcal{X}_{132}=0 \\ & m(\partial_{t})=1.16V, \mathcal{X}_{132}=0 \\ & BR(\partial_{t})=-16V, \mathcal{A}_{232}=0 \\ \end{split}$	1607.08079 1404.2500 ATLAS:COMF-2016.075 1405.5086 SUSY2016-62 1704.08493 1704.08493 1710.071/1 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		m(${ ilde t}_1^0)$ <200 GeV	1501.01325
*Only phen simp	'Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10^{-1} 1 Mass scale [TeV] simplified models. c.i. refs. for the assumptions made.								

I.Boyko

What after the LHC?

- Possible extension to HE-LHC (33 TeV)
- Or build a brand new collider!
- Hadron or lepton collider?

1982-83 SPS Discovery of W and Z $\sigma(M_z) = 2 \text{ GeV}$

1989-95 LEP Precision study of Z $\sigma(M_z) = 2 \text{ MeV}$

Choice of collider type

- e⁺e⁻ collisions
- Point-like particles
- Total annihilation: initial state known
- Decent background
- Limited in energy, but – precision!

- pp(bar) collisions
- Composite particles
- Random energy of the hard interaction
- High background
- Highest energy frontier discovery!

Choice of e⁺e⁻ collider scheme

- e⁺e⁻ circular colliders are limited in energy by the synchrotron radiation due to the beam curvature
- Either you build a tunnel of enormous size...
- Or you build a linear collider with enormous acceleration gradient
- Linear collider: advantage in energy
- Circular collider: re-use for a next pp-collider

Future collider candidates

- ILC: 20 (30?) km, 250 (500?) GeV, Higgs factory (Giga-Z possible)
- CLIC: 50 km, 3000 GeV, Higgs, Top, discoveries
- CEPC: 100 km, 250 GeV, Higgs physics + Giga-Z
- FCC: 100 km, 350 GeV, Higgs + Tera-Z

- HL LHC: 14 TeV, 3 ab⁻¹
- HE-LHC: 33 TeV, 2 ab⁻¹
- CEPC-pp: 70 TeV, 10 ab⁻¹
- FCC-pp: 100 TeV, 5 ab⁻¹

ILC

- Initial baseline: 500 GeV, possible extension to 1000 GeV
- After "cost optimization": 250 GeV, extension to 500 GeV unlikely
- Cost down from \$8G to \$4G

Cost reduction by technological innovation

Innovation of Nb (superconducting) material process: decrease in material cost

Innovative surface processing for high efficiency cavity by FNAL: decrease in number of cavities

CLIC layout (3 TeV)

CLIC running baseline

Stage	\sqrt{s} (GeV)	\mathscr{L}_{int} (fb ⁻¹)
1	380	500
	350	100
2	1500	1500
3	3000	3000

CEPC/SppC

CEPC site

CEPC schedule

- CEPC data-taking starts before the LHC program ends
- Possibly con-current with the ILC program

Future Circular Collider (FCC)

International FCC collaboration (CERN as host lab) to study:

•pp-collider (*FCC-hh*)
 → main emphasis,
 defining infrastructure
 requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

~100 km tunnel infrastructure in Geneva area, site specific
e⁺e⁻ collider (FCC-ee), as potential first step
HE-LHC with FCC-hh technology

FCC tunnel

Comparison of e⁺e⁻ projects

Energy landmarks of ee colliders

- 91 GeV: repeat LEP1 experiments
 "Tera-Z": full LEP1 data every 5 min !!!!!!!!!!!
- 161 GeV: E=2xM_W, threshold scan
 repeat 1996 at LEP2, 1000x lumi
- 240-250 GeV: Higgs factory
- 350 GeV: E=2xM_t, threshold scan
- 400 GeV: maximum top-pair cross-section
- 500-3000 GeV: discovery of new physics!

Sources of precision

- Statistical error
 - Increase collider luminosity
- Systematic error
 - Novel detector technologies, improved analysis methods
- Theoretical error
 - More precise calculations, higher perturbative order, include polarization
- Parametric error
 - Better measurement of external parameters

Physics at 91 GeV

- 10¹² Z bosons per year means increase of LEP1 statistics by a factor of 100000, statistical error reduced by factor 300
- In principle, should improve all systematic and theoretical errors by the same factor
- Seems impossible. Factor 50 as a VERY optimistic estimate
- Only the measurements that were statistically dominated at LEP1 can fully exploit the hyperhigh luminosity of Tera-Z

– Example: A_{FB}(ee→μμ)

Example: $A_{FB}(ee \rightarrow \mu\mu)$

Forward-Backward asymmetry : α_{QED}(m_Z)

P. Janot et

- Measure $\alpha_{QED}(m_Z)$ with A_{FB} at $\sqrt{s} = 87.9$ and 94.3 GeV
 - To match statistical error
 - Predict AFB with a precision of ~10⁻⁵ at these energies
 - Predict IFI effects (ISR+FSR interference) to ~ few 10⁻⁴

S. Jadach et al.

Physics at 161 GeV

- LEP2 spent only few weeks at 161 GeV
 - The dream was Higgs...
- Measurement of M_W at hadron colliders AND at LEP mainly from reconstruction of W decay products
 - Systematics-dominated
- Threshold scan at ee collider gives M_W with completely different (and small) systematics (E_{CM}!!)
- Weinberg angle: $M_W/M_Z = \sin\theta_W$

I.Boyko

Physics at 250 GeV

Model-independent Higgs

- At 250 GeV we look for events $ee \rightarrow HZ \rightarrow H\mu\mu$
- Muon pair is used as a tag, and we look at the mass recoiling against Z
- If recoil mass is 125 GeV, this is Higgs, for sure
- We don't need to reconstruct Higgs! It may be even invisible decay
- Model independent measurement!

Higgs mass measurement

- At ILC/FCC/CEPC Higgs mass can be measured with 15-20 MeV precision as a mass recoiling against a dymuon in ee→HZ events
- The method relies on well defined kinematics of the initial ee system
- CLIC precision is only 110 MeV because of large beamspread and long tail of beamstrahlung
- We plan to apply a new method in CLIC environment

New method for M_H

- Measured muon tracks define Z kinematics
- For the b-jets from H→bb only directions (but not energies) are measured
- Zero p_T of the initial state is assumed (reasonable!)
- No assumption on p_z of initial system is nedeed!
- Especially good for the CLIC environment!

Top quark physics

M_t: threshold scan at 350 GeV

- 10 points, 10fb⁻¹ each
 (1 year running at 350 GeV)
- Cross-section curve directly sensitive to the top mass, width, Yukawa coupling, strong coupling constant
- δ(m_t)=±20MeV(stat)
 ±40MeV(syst) ±40 MeV(scale)
- $\delta(\Gamma_t)=\pm 45 \text{MeV(stat)}$ $\pm 60 \text{MeV(scale)}$

Top at 380 GeV: rare decays

- The FCNC decays
 t→cγ/cZ/cg/cH have negligible
 branchings in the Standard
 Model (10⁻¹²-10⁻¹⁴)
- Currently 2 channels are under study: t→cγ and t→cH
- Signal: for ee→tt one top decays anomalously, another decay is standard, t→Wb
- CLIC sensitivity: Br<1-10⁻⁴ (Expected HL-LHC: 2-10⁻⁴)

Top polarization at E≥380 GeV

- Fermion pair production described by 3 observables: crosssection σ, asymmetry A_{FB}, polarization P
- $P=(N_R-N_L)/(N_R+N_L)$
- Only accessible via distribution of decay products
- Only available for τ and t

Top electroweak couplings

 $\Gamma^{t\bar{t}X}(k^2,q,\bar{q}) = ie \left\{ \gamma_{\mu} \left(F_{1V}^X(k^2) + \gamma_5 F_{1A}^X(k^2) \right) - \frac{\sigma_{\mu\nu}}{2m_t} (q+\bar{q})^{\nu} \left(iF_{2V}^X(k^2) + \gamma_5 F_{2A}^X(k^2) \right) \right\}$ $\begin{array}{c} \text{vector} \quad \text{axial} \quad \text{tensor} \quad \text{CPV} \end{array} \right\}$

- Observables to distinguish Z and γ couplings:
 - Energy dependence of the cross-section
 - Forward-backward charge asymmetry
 - Beam polarization asymmetry (P_e - = ±80%)
 - Top quark polarization
 - Spin correlation
- Deviations from SM can be parameterized in terms of New Physics, e.g. in the EFT language

$$\begin{split} F_{1,V}^{Z} - F_{1,V}^{Z,SM} &= \frac{1}{2} \left(\underline{C}_{\varphi Q}^{(3)} - \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{V} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \overset{\varepsilon}{=} \\ F_{1,A}^{Z} - F_{1,A}^{Z,SM} &= \frac{1}{2} \left(-\underline{C}_{\varphi Q}^{(3)} + \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ F_{2,V}^{Z} &= \left(\underline{\operatorname{Re}\{C_{tW}\}c_{W}^{2} - \operatorname{Re}\{C_{tB}\}s_{W}^{2} \right) \frac{4m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = \operatorname{Re}\{\underline{C}_{uZ}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ F_{2,V}^{\gamma} &= \left(\underline{\operatorname{Re}\{C_{tW}\} + \operatorname{Re}\{C_{tB}\}} \right) \frac{4m_{t}^{2}}{\Lambda^{2}} = \operatorname{Re}\{\underline{C}_{uA}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ \left[F_{2,A}^{Z}, F_{2,A}^{\gamma} \right] \propto \left[\operatorname{Im}\{C_{tW}\}, \operatorname{Im}\{C_{tB}\} \right] \end{split}$$

I.Boyko

Higgs physics at 3000 GeV

About 1M Higgses will be reconstructed at CLIC

Parameter	Relative precision				
	350 GeV 500 fb ⁻¹	$+ 1.4 \text{ TeV} + 1.5 \text{ ab}^{-1}$	$+ 3 \text{ TeV} + 2 \text{ ab}^{-1}$		
<i>K</i> _{HZZ}	0.6 %	0.4 %	0.3 %		
KHWW	1.1 %	0.2 %	0.1 %		
KHbb	1.8 %	0.4 %	0.2 %		
KHcc	5.8 %	2.1 %	1.7 %		
KHTT	3.9%	1.5 %	1.1 %		
$\kappa_{\rm H\mu\mu}$	_	14.1 %	7.8%		
KHtt	<u> </u>	4.1 %	4.1 %		
KHgg	3.0%	1.5 %	1.1 %		
$\kappa_{\rm H\gamma\gamma}$	_	5.6%	3.1 %		
$\kappa_{\rm HZ\gamma}$	-	15.6 %	9.1 %		
$\Gamma_{\rm H,md,derived}$	1.4 %	0.4 %	0.3 %		

New physics at 3000 GeV

Electron radius from $ee \rightarrow \gamma\gamma$

	LEP limit	CLIC expectation
Λ_{\pm} (QED cut-off)	$364 {\rm GeV}$	6-6.5 TeV
Electron radius	$4.6 \times 10^{-17} { m cm}$	$(3 - 3.5) \times 10^{-18} \text{ cm}$
Λ' (contact interactions)	$831 {\rm GeV}$	$18-20 { m TeV}$
M_s (extra dimensions)	$933 { m GeV}$	$15-17 { m TeV}$
M_{e^*} (excited electron)	$248 {\rm GeV}$	$4.5-5.0 { m TeV}$

I.Boyko

$\gamma\gamma \rightarrow WW \text{ at } 3000 \text{ GeV}$

- At CLIC energies, most WW pairs are produced in collisions of γγ rather than e⁺e⁻
- Our generator-level study show that even with simplest eµ final state ≈10⁴ events can be selected with 10% background level

Quartic WWyy coupling

- SM includes quartic couplings WWWV, WWZZ, WWγγ and WWZγ couplings
- Anomalous WWγγ was searched at LEP (new physics excluded up to few GeV) and at LHC (100-200 GeV)
- Our generator-level study shows that CLIC can improve LHC limit by an order of magnitude

Precision means discovery!

Electroweak observables are sensitive to heavy particles in "loops"

• For example, in the standard model: $\Gamma(Z \rightarrow \mu^+ \mu^-)$ or m_W

- With precise measurements of the Z mass, Z width, and Weinberg angle [+ $\alpha_{QED}(m_Z)$]
 - LEP was able to predict m_{top} and m_w (with uncertainty for unknown m_H)
- With the discovery of the top (Tevatron) at the right mass
 - LEP was able to predict m_H

Precision of theory

- At the next-generation ee colliders the experimental precision will be improved by 1-2 orders of magnitude
- The measurements must be confronted to theoretical calculations
- Corresponding improvement of calculations is an absolute necessity

• After LEP

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{had}} \pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{theo}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta\alpha_{had}} \pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{theo}$$

Precision of theory

- At the next-generation ee colliders the experimental precision will be improved by 1-2 orders of magnitude
- The measurements must be confronted to theoretical calculations
- Corresponding improvement of calculations is an absolute necessity

• After FCC-ee $M_W = 80.3593 \pm 0.0002 \ m_t \pm 0.0001 \ d_Z \pm 0.0004 \ \Delta \alpha_{had}$ $0.0005 \qquad \pm 0.0001 \ \alpha_S \pm 0.0000 \ M_H \pm 0.0040_{theo}$ $\sin^2 \theta_{eff}^{\ell} = 0.231496 \pm 0.000015 \ m_t \pm 0.000001 \ M_Z \pm 0.000006 \ \Delta \alpha_{had}$ $\pm 0.0000014 \ \alpha_S \pm 0.000000 \ M_H \pm 0.000047_{theo}$

I.Boyko

Beam polarization

I.Boyko

Importance of polarization

- Luminosity of SLC was 1/50 of LEP1. Still, SLC measured some EW observables (A_{LR}, sin²) with precision similar to LEP, thanks to polarized beams
- CLIC and ILC are designed with 80% beam polarization. Much more difficult at circular machines
- Theoretical calculations must take into account beam polarization

Full threatment of polarization

$$\begin{split} |\mathcal{M}|^{2} = &\frac{1}{4} \Biggl\{ (1 - P_{e^{-}}^{||})(1 + P_{e^{+}}^{||})|\mathcal{H}_{-+}|^{2} + (1 + P_{e^{-}}^{||})(1 - P_{e^{+}}^{||})|\mathcal{H}_{-+}|^{2} \\ &+ (1 - P_{e^{-}}^{||})(1 - P_{e^{+}}^{||})|\mathcal{H}_{--}|^{2} + (1 + P_{e^{-}}^{||})(1 - P_{e^{+}}^{||})|\mathcal{H}_{++}|^{2} \\ &- 2P_{e^{-}}^{T}P_{e^{+}}^{T} \Biggl[\cos(\phi_{-} - \phi_{+})\operatorname{Re}(\mathcal{H}_{++}\mathcal{H}_{--}^{*}) + \cos(\phi_{-} + \phi_{+} - 2\phi)\operatorname{Re}(\mathcal{H}_{-+}\mathcal{H}_{+-}^{*}) \\ &+ \sin(\phi_{-} + \phi_{+} - 2\phi)\operatorname{Im}(\mathcal{H}_{-+}\mathcal{H}_{+-}^{*}) + \sin(\phi_{-} - \phi_{+})\operatorname{Im}(\mathcal{H}_{++}\mathcal{H}_{--}^{*}) \Biggr] \\ &+ 2P_{e^{-}}^{T} \Biggl[\cos(\phi_{-} - \phi) \Biggl((1 - P_{e^{+}}^{||})\operatorname{Re}(\mathcal{H}_{+-}\mathcal{H}_{--}^{*}) + (1 + P_{e^{+}}^{||})\operatorname{Re}(\mathcal{H}_{++}\mathcal{H}_{-+}^{*}) \Biggr) \\ &+ \sin(\phi_{-} - \phi) \Biggl((1 - P_{e^{+}}^{||})\operatorname{Im}(\mathcal{H}_{+-}\mathcal{H}_{--}^{*}) + (1 + P_{e^{+}}^{||})\operatorname{Im}(\mathcal{H}_{++}\mathcal{H}_{+-}^{*}) \Biggr) \Biggr] \\ &- 2P_{e^{+}}^{T} \Biggl[\cos(\phi_{+} - \phi) \Biggl((1 - P_{e^{-}}^{||})\operatorname{Re}(\mathcal{H}_{-+}\mathcal{H}_{--}^{*}) + (1 + P_{e^{-}}^{||})\operatorname{Re}(\mathcal{H}_{++}\mathcal{H}_{+-}^{*}) \Biggr) \Biggr] \Biggr\}, \end{split}$$

where \mathcal{H}_{++} , \mathcal{H}_{--} , \mathcal{H}_{+-} , \mathcal{H}_{-+} — helicity amplitudes. G. Moortgat-Pick et al. Phys. Rept. 460 (2008) 131–243

I.Boyko

MC generator with polarization

- Currently there is no MC generator with polarization at complete 1-loop level
- Our group plans to create a generator with polarization for the most important e⁺e⁻ processes at complete 1-loop EW level, with leading EW contributions up to 3 loops and leading QCD contributions up to 4 loops
- For Bhabha this work is already at a rather advanced stage

$$\sigma^{1-\text{loop}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \omega) + \sigma^{\text{hard}}(\omega)$$

Summary

- It is widely believed that the next big machine will be an e⁺e⁻ collider
- It will deliver a wonderful physics and improve the LHC precision by 1-2 orders of magnitude
- There are 4 mature collider project: CEPC, FCC, ILC, CLIC.
- JINR experimentalists are participating in CLIC
- JINR theoreticians are developing tools that will be necessary for any of those projects