
Neural Networks and Numerical Integration of Multiple Integrals

Gregory A. Shipunov1

supervisors: Oksana I. Streltsova,1, 2 Yury L. Kalinovsky1, 2

1Dubna State University, 19 Universitetskaya St, Dubna, 141980, Russian Federation
2Joint Institute for Nuclear Research, 6 Joliot-Curie St, Dubna, 141980, Russian Federation

The Spring School of Information Technologies
of the Joint Institute for Nuclear Research 2025

1 / 24

Table of Contents

1 Problem Statement

2 Results

3 Benefits of using neural network approach

4 Future plans

2 / 24

Table of Contents

1 Problem Statement

2 Results

3 Benefits of using neural network approach

4 Future plans

3 / 24

Problem Statement 1

This work is dedicated to developing the software for numerical calculations in domain of
modelling of physical processes for NICA collider. Numerical modeling of physical
processes involves studying of the particle properties based on Bethe-Salpeter equation:

Γ(q,P) = −4

3

∫
d4p

(2π)4
D(q − p)γαS1Γ(q,P)S2γα. (1)

The vertex function Γ(p,P) depends on the relative momentum p, and the total
momentum of the bound state P. Si (p) are the dressed quark propagator in the
Euclidean space:

Si (pi) =
1

i(pi · γ) +mi
(2)

The momenta pi = p + qi , qi = biP, i = 1, 2 with b1 = −m1/(m1 +m2),
b2 = m2/(m1 +m2), mi are the constituent quark masses.

4 / 24

Problem Statement 2

Equation (1) contains the interaction kernel D(q − p) which describes the effective gluon
interaction within a meson. We consider the rank -1 separable model

D(q − p) = D0F (q
2)F (p2) , (3)

where D0 is the coupling constant and the function F (p2) is related to scalar part of
Bethe - Salpeter vertex function. We employ F (q2) in the Gaussian form

F (p2) = e−p2/λ2

with the parameter λ which characterizes the finite size of the meson.

5 / 24

Problem Statement 3

This separable Anzatz of the interaction kernel (3) allows to write the meson observables
in the term of the polarization operator (the buble diagram):

+ + ... =
1

1−
, (4)

where

→
∫ ∞

0

dp

2π4
F (p2)

1

[(p + q1)2 +m2
1][(p + q2)2 +m2

2]
. (5)

To calculate these integrals we use the equations:

1

(p + qi)2 +m2
i

=

∫ ∞

0

dt{exp(−t[(p + qi)
2 +m2

i])}, (6)

F (p2) =

∫ ∞

0

ds{exp(−sp2)F (s)}. (7)

The case of more than two mesons is described using triple and quadruple integrals.

6 / 24

Problem Statement 4

This way the following integral equation is produced:∫ 1

0

dα{αa(1− α)b}
∫ ∞

0

dt{ tm

(1 + t)n
F [z0]} ≡ I (a, b,m, n;F [z0]), (8)

F [z0] = exp(−2z0),

z0 = tD +
t

1 + t
R2,

D = α1(b
2
1P

2 +m2
1) + α2(b

2
2P

2 +m2
2),

R2 = (α2
1b

2
1 + α2

2b
2
2 + 2α1α2b1b2)P

2,

b1 = − m1

m1 +m2
, b2 =

m2

m1 +m2
,

α1 = α, α2 = 1− α.

This integral is used in multiple calculations in the problem and its value describes the
form of the mesons. The calculations require multiple (50 times and more) integrations
of (8).

7 / 24

Problem Statement 5

Let a continuous real function f (x) be defined as f : IRn → IR. Let Ω be a compact
subset of IRn and let G be a bounded convex subset of Ω. Let, also, x be a vector of n
dimensions in Ω. Than

I (f) =

∫
G

dxf (x), (9)

is a definite integral of f across set G .
Therefore, the problem is to get the I (f) value calculated with use of neural network
approach. The neural network model will be used to approximate the function f (x)1.
Than this model will be used to calculate the approximate integral value:

Î (f) =

∫
G

dxf̂ (x), (10)

1S. Lloyd, R. A. Irani, M. Ahmadi, Using neural networks for fast numerical integration and optimization,
IEEE Access 8 (2020) 84519–84531.

8 / 24

Problem Statement 6

Figure 1: The MLP structure used in the neural network approach

The MLP structure will have logistic sigmoid as activation function on the hidden layer:

ϕ(z) =
1

1 + exp(−z)
. (11)

9 / 24

Problem Statement 7

With ϕ(z) defined, network structure’s mathematical form is:

f̂ (x) = b(2) +
k∑

j=1

w
(2)
j ϕ(b

(1)
j +

n∑
i=1

w
(1)
ji xi). (12)

We can apply following substitution2 here:

− Li0(− exp(z)) =
1

1 + exp(−z)
= ϕ(z), (13)

where Li0(u(z)) is a Jonquière’s function or the polylogarithm of order 0.

2S. Lloyd, R. A. Irani, M. Ahmadi, Using neural networks for fast numerical integration and optimization,
IEEE Access 8 (2020) 84519–84531.

10 / 24

Problem Statement 8

Let number of dimensions n = 1. With substitution (13) equation (12) can be integrated
over given boundaries [α, β] to produce the following numerical integration formulae for
1-dimensional case3:

Î (f) =

∫ β

α

dx

(
b(2) +

k∑
j=1

w
(2)
j ϕ(b

(1)
j + w

(1)
1j x)

)
=

= b(2)(β − α) +
k∑

j=1

w
(2)
j

(
(β − α) +

Φj

w
(1)
1j

)
, (14)

Φj = Li1(− exp[−b
(1)
j − w

(1)
1j α])− Li1(− exp[−b

(1)
j − w

(1)
1j β]). (15)

Formulae (14-15) can be extrapolated to higher dimensions.
Thus we have got the numerical integration method.

3S. Lloyd, R. A. Irani, M. Ahmadi, Using neural networks for fast numerical integration and optimization,
IEEE Access 8 (2020) 84519–84531.

11 / 24

Table of Contents

1 Problem Statement

2 Results

3 Benefits of using neural network approach

4 Future plans

12 / 24

Neural Network Model & Training Process Description

The neural network model dedicated to approximate the f (x) function was implemented
using Python programming language and its PyTorch library and had following setting:

Size of input layer n was equal to the number of function’s dimensions.

Size of hidden layer was k = 25.

The training process took approximately 15 seconds fo 1-dimensional functions and 30
seconds4 for 2-dimensional functions. The training was conducted under the following
parameters:

Optimizer Adam was used.

Training was performed over 5000 epochs.

Dataset size was 40000 points. 0.9 of the size was used for training and 0.1 for
testing of the model.

The dataset structure was the uniform grid and the standard uniform distribution
within given boundaries.

4All the training was performed with no parallelization on the following hardware: M1 Pro (8 cores), 16 GB
RAM; and software: Jupyter Lab 4.2.5, Python 3.13.2, PyTorch 2.2.2.

13 / 24

Results 1: Genz Package

Figure 2: The Mean absolute error metrics for comparison of neural network numerical
integration values and quad numerical integration values (Product Peak and Discontinuous bars
are clipped for scale but their values are presented)

Figure 4 depicts the mean absolute errors of integration of Alan Genz package5 1D and
2D functions compared to results calculated using scipy.integrate.quad fucntion of
Python programming language.

5A. Genz, Testing multidimensional integration routines, in: Proc. of international conference on Tools,
methods and languages for scientific and engineering computation, 1984, pp. 81–94.

14 / 24

Results 2: Hidden layer size

Figure 3: The Mean absolute error metrics relative to the size of hidden layer (k) – [10, 100]
15 / 24

Results 3: Distribution type

Figure 4: The Mean absolute error metrics relative to the type of dataset distribution (UG -
Uniform Grid and SUD - Standard Uniform Distribution) with different dataset sizes – [100,
40000] 16 / 24

Results 4: Equation (8)

Figure 5: The absolute errors between numerical integral values calculated using neural network
approach and FORTRAN function qdag

Figure 5 depicts the absolute errors of integration of equation (8) compared to results
calculated previously using qdag function of FORTRAN programming language.

17 / 24

Table of Contents

1 Problem Statement

2 Results

3 Benefits of using neural network approach

4 Future plans

18 / 24

Benefits of using neural network approach

The integration of similar function across different boundaries time efficiency.

The integration of functions of high-dimensions.

19 / 24

Table of Contents

1 Problem Statement

2 Results

3 Benefits of using neural network approach

4 Future plans

20 / 24

Future plans

Improve accuracy of integration.

Implement higher dimensions numerical integration functionality.

Consider other ways to use neural networks for numerical integration.

21 / 24

Thank You for Your Attention!

22 / 24

Apendix A: Genz’s testing functions families 1

Oscillatory (1)

f (x) = cos(2πu1 +
n∑

i=1

cixi).

Product Peak (2)

f (x) =
n∏

i=1

(c−2
i + (xi − ui)

2)−1.

Corner Peak (3)

f (x) = (1 +
n∑

i=1

cixi)
−(n+1).

Gaussian (4)

f (x) = exp(−
n∑

i=1

c2i (xi − ui)
2).

Continuous (5)

f (x) = exp(−
n∑

i=1

ci |xi − ui |).

Discontinuous (6)

f (x) =

{
0 if any of xi > ui ,

exp(
∑n

i=1 cixi) alternatively.
23 / 24

Apendix A: Genz’s testing functions families 2

The n value is the number of dimensions of the integrand. This functions contain
n-vectors u and c in their definition.

1 ui is a random value in [0, 1].

2 c =
(

h
nj

∑n
i=1 c′i

)
c′, c′ is and n-vector, whith c ′i is a random value in [0, 1].

The h and j are difficulty parameters. In the case of this study the last parameter was
j = 1 and h parameter is equal to (100, 150, 600, 150, 100, 16) accordingly for each of the
function families.

24 / 24

	Problem Statement
	Results
	Benefits of using neural network approach
	Future plans

