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Beam-Beam Interaction. General Features
The now-common term beam-beam interaction is quite longstanding.

First machine to start operating in collider mode in 1970 is the Intersecting Storage Rings (ISR) at
CERN.

At the present time, it can be without hesitation stated that beam-beam interaction represents
one of the most complex problems in the physics of accelerators and charged particle beams.

Despite significant progress in understanding the relevant issues and underlying processes, there
is still no comprehensive picture that encompasses all the features and physical details of beam-
beam interaction.

It is fair to say that the progress in numerical simulation of beam-beam interaction is
significantly greater than the achievements of the theoretical models proposed so far.
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Beam-Beam Interaction. Weak-Strong Model
Historically, the first theoretical model of the beam-beam interaction is the so called weak-strong
model, also known as the incoherent beam-beam interaction.

Special workshop has been dedicated  M. Month and J.C. Herrera, editors, Nonlinear
Dynamics and the Beam-Beam Interaction. AIP Conference Proceedings, No. 57, (1980).
Enormous amount of articles hereafter.

In the weak-strong model, it is assumed that one of the beams is strong and rigid and does not
undergo significant changes (practically unmodified) in the collision process.

The role of the strong beam is to act on the other beam (considered weak and mobile), the latter
playing the role of a dynamic probe and indicator of the interaction.

The weak-strong beam-beam interaction affects the single particle behaviour and considers the
beam-beam interaction as a static lens. Obviously, highly simplified model, but in many cases
provides good enough results.
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Beam-Beam Interaction. Strong-Strong Model
The realistic model reflecting the collective nature of the interaction between the two counter-
rotating beams is called the strong-strong or coherent beam-beam interaction model for short.

In this model, the evolution of the two beams occurs synchronously, as the electromagnetic field
created by each beam is influencing and modifying the other one at the interaction point.

The coherent beam-beam interaction in one dimension was first theoretically studied by Chao and
Ruth by solving the linearized Vlasov-Poisson equations  A.W. Chao and R.D. Ruth,
“Coherent beam-beam instability in colliding-beam storage rings,” Particle Accelerators, vol. 16,
pp. 201–216, 1985.

Since the pioneering work of Chao and Ruth, numerous papers based on the self-consistent Vlasov
technique have been published, among which it is worth noting, at the first place, the article by
Yu. Alexahin  Yu. Alexahin, “A study of the coherent beam–beam effect in the
framework of the Vlasov perturbation theory,” Nuclear Instruments and Methods in Physics
Research Section A, vol. 480, no. 2–3, pp. 253–288, 2002.
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Beam-Beam Interaction. Strong-Strong Model
Based on the macroscopic hydrodynamic approach the results regarding the linear mode coupling, also
known as the coherent beam-beam resonance have been generalized in  S.I. Tzenov and R.C.
Davidson, “Macroscopic fluid approach to the coherent beam-beam interaction,” Proceedings of
IEEE Particle Accelerator Conference (PAC 2001), 18-22 June 2001. Chicago, IL, United States, vol.
0106181, pp. 2078–2080, 2001.

The standard technique for solving the Vlasov-Poisson system of equations mandatorily used is in terms of
action-angle variables.

The approach used in  Stephan I. Tzenov and Ronald C. Davidson, “Hamiltonian
formalism for solving the Vlasov-Poisson equations and its applications to periodic focusing systems
and coherent beam-beam interaction,” Physical Review Special Topics - Accelerators and Beams, vol.
5, p. 021001, 2002.

is implemented in a ”mixed” phase space (old coordinates and new canonical momenta).

In this way, the form of the Poisson equation for the beam-beam potential(s) in Cartesian
coordinates is preserved, which is significantly simpler to handle analytically on one hand, and more
computationally efficient on the other.
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Beam-Beam Interaction Model Involving Symplectic Maps
Why use Symplectic Maps?

The local nature of beam-beam interaction is an excellent testbed for the application of the symplectic
mappings approach, which is unfortunately relatively less popular as compared to the Vlasov-Poisson
technique.

In the weak-strong model the beam-beam potential is a fixed static electromagnetic element  maps can
be defined in a straightforward manner. Pioneering article  Alex J. Dragt, “Transfer map
approach to the beam-beam interaction,” In Nonlinear Dynamics and the Beam-Beam Interaction, M.
Month and J.C. Herrera, editors, AIP Conference Proceedings, vol. 57, pp. 143–157, 1980.

A new approach, based on the symplectic twist map method with subsequent regularization of the one-turn
beam-beam map, has been developed in  Stephan I. Tzenov, “Renormalization Group
Approach to the Beam-Beam Interaction in Circular Colliders,” Proceedings of EPAC 2002, Paris,
France, pp. 1422–1424, 2002.

A regularized symplectic beam-beam map has been proposed, which correctly describes the long-
term asymptotic behavior of the original dynamical system. It has been shown that the regularized
map possesses an integral of motion that can be calculated in any desired order. The invariant
density in phase space (stationary distribution function) has been constructed as a generic function
of the integral of motion and a coupled system of nonlinear functional equations has been obtained
for the distributions of the two colliding beams.
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Hamiltonian Description of Beam-Beam Interaction
Two-dimensional model of coherent beam-beam interaction in a plane transversal to the individual
particle orbits in each beam is described by the Hamiltonian

𝒙, 𝒑𝒙, 𝒚, 𝒑𝒚  canonical conjugate pair of transverse variables, 𝑹 mean machine radius

𝑮𝒙,𝒚
(𝒌)
 linear machine focusing strengths for each beam in the transverse directions

𝒒𝒌 corresponding particle charges,

𝑬𝒔𝒌 and 𝜷𝒔𝒌 energy and the relative velocity of the synchronous particle, respectively

𝜹𝒑 𝜽  periodic delta-function

𝝋𝟑−𝒌 and 𝑨𝒔(𝟑−𝒌) scalar and the longitudinal component of the vector potential, respectively. 
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𝓗𝒌 =
𝑹

𝟐
𝒑𝒙
𝟐 + 𝒑𝒚

𝟐 +
𝟏

𝟐𝑹
𝑮𝒙
(𝒌)
𝒙𝟐 + 𝑮𝒚

(𝒌)
𝒚𝟐 + 𝜹𝒑 𝜽

𝑹𝒒𝒌

𝑬𝒔𝒌𝜷𝒔𝒌
𝟐

𝝋𝟑−𝒌 − 𝒄𝜷𝒔𝒌𝑨𝒔(𝟑−𝒌)



Hamiltonian Description of Beam-Beam… Continued
In the ultra-relativistic limit

𝛁⊥
𝟐𝝋𝟑−𝒌 = −

𝒒𝟑−𝒌𝑵𝟑−𝒌𝝔𝟑−𝒌
𝝐𝟎

, 𝛁⊥
𝟐𝑨𝒔 𝟑−𝒌 = −𝝁𝟎𝒒𝟑−𝒌𝑵𝟑−𝒌𝑱𝒔 𝟑−𝒌 , 𝛁⊥

𝟐 =
𝝏𝟐

𝝏𝒙𝟐
+

𝝏𝟐

𝝏𝒚𝟐

Since 𝑱𝒔(𝟑−𝒌) = −𝒄𝜷𝒔(𝟑−𝒌)𝝔𝟑−𝒌  𝑨𝒔(𝟑−𝒌) = −
𝜷𝒔(𝟑−𝒌)

𝒄
𝝔𝟑−𝒌

Appropriate scaling of the beam-beam potential and normalized canonical variables

𝝋𝒌 =
𝒒𝒌𝑵𝒌𝜷𝟏𝒌

∗

𝟒𝝅𝝐𝟎
𝑽𝒌, 𝒙 = 𝒒𝟏 𝜷𝟏𝒌, 𝒑𝒙 =

𝟏

𝜷𝟏𝒌
𝒑𝟏 − 𝜶𝟏𝒌𝒒𝟏

𝛼-s and 𝛽-s Twiss parameters, 𝛽∗ corresponding Twiss parameter at the interaction point.
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𝓗𝒌 =
 𝝌𝟏𝒌
𝟐

𝒑𝟏
𝟐 + 𝒒𝟏

𝟐 +
 𝝌𝟐𝒌
𝟐

𝒑𝟐
𝟐 + 𝒒𝟐

𝟐 + 𝜹𝒑 𝜽 𝝀𝒌𝑽𝟑−𝒌

𝝀𝒌 =
𝑹𝒓𝒑𝒁𝒌𝒁𝟑−𝒌𝑵𝟑−𝒌𝜷𝟏(𝟑−𝒌)

∗

𝑨𝒌𝜸𝒔𝒌

𝟏 + 𝜷𝒔𝒌𝜷𝒔(𝟑−𝒌)

𝜷𝒔𝒌
𝟐



Hamiltonian Description of Beam-Beam… Continued
The normalized beam-beam potential satisfies the Poisson equation

𝝏𝟐

𝝏𝒒𝟏
𝟐 + 𝜿𝟑−𝒌

𝝏𝟐

𝝏𝒒𝟐
𝟐 𝑽𝟑−𝒌 = −𝟒𝝅𝝋𝟑−𝒌, 𝜿𝟑−𝒌 =

𝜷𝟏(𝟑−𝒌)
∗

𝜷𝟐(𝟑−𝒌)
∗

For the sake of simplicity and clarity, consider the one-dimensional case in one of the transversal
degrees of freedom.

The particle distribution function 𝒇𝒌 𝒒, 𝒑; 𝜽 of each beam is a solution to the Vlasov equation

the normalized beam density is expressed as

𝝔𝒌 𝒒; 𝜽 =  

−∞

∞

𝒅𝒑𝒇𝒌 𝒒, 𝒑; 𝜽
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𝝏𝒇𝒌
𝝏𝜽

+  𝝌𝒌𝒑
𝝏𝒇𝒌
𝝏𝒒

−
𝝏𝓗𝒌

𝝏𝒒

𝝏𝒇𝒌
𝝏𝒑

= 𝟎



The Frobenius-Perron Operator for the Beam-Beam Map

The locality of the beam-beam interaction suggests a substantial simplification of the problem.

What is the Frobenius-Perron Operator?

Consider a continuous multidimensional finite degree-of-freedom dynamical system (not necessarily
Hamiltonian) defined by a state vector x(t). The evolution is described by the set of equations

𝒅𝒙

𝒅𝒕
= Ϝ 𝒙, 𝝀; 𝒕 → 𝐋𝐢𝐨𝐮𝐯𝐢𝐥𝐥𝐞 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧

𝝏𝒇 𝒙; 𝒕

𝝏𝒕
+ 𝛁 ⋅ Ϝ 𝒙, 𝝀; 𝒕 𝒇 𝒙; 𝒕 = 𝟎

Formal solution

For one-dimensional maps of the form 𝒙𝒏+𝟏 = 𝑭 𝒙𝒏, 𝝀

 ℑ is the Frobenius-Perron operator.
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𝒙 𝒕 = 𝑿 𝒙𝟎, 𝝀; 𝒕 → 𝒇 𝒙; 𝒕 =  𝒅𝒛𝜹 𝒙 − 𝑿 𝒛, 𝝀; 𝒕 𝒇𝟎 𝒛 , 𝒇𝟎 𝒛 − 𝐢𝐧𝐢𝐭𝐢𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧

𝒇𝒏+𝟏 𝒙 =  ℑ𝒇𝒏 𝒙 =  𝒅𝒛𝜹 𝒙 − 𝑭 𝒛, 𝝀 𝒇𝒏 𝒛



The Frobenius-Perron Operator for… Continued

The Frobenius-Perron operator can be written in a more explicit form as

 ℑ𝒇𝒏 𝒙 = 

𝒃

𝒇𝒏 𝑭𝒃
−𝟏 𝒙, 𝝀

𝑭′ 𝑭𝒃
−𝟏 𝒙, 𝝀

Index b runs over all branches of the inverse map 𝑭−𝟏 and F′ differentiation with respect to x

The beam-beam map is derived by formally solving the Hamilton’s equations of motion
 𝒒 =  𝝌𝒌𝒑,  𝒑 = −  𝝌𝒌𝒒 − 𝝀𝒌𝜹𝒑 𝜽 𝑽𝟑−𝒌

′ 𝒒; 𝜽

The result is

𝝎𝒌 = 𝟐𝝅𝝂𝒌 𝝂𝒌  betatron tune related to the k-th beam.
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𝒒𝒏+𝟏 = 𝒒𝒏 cos𝜔𝑘 + 𝒑𝒏 − 𝝀𝒌𝑽𝟑−𝒌
′ 𝒒𝒏 sin𝜔𝑘

𝒑𝒏+𝟏 = −𝒒𝒏 sin𝜔𝑘 + 𝒑𝒏 − 𝝀𝒌𝑽𝟑−𝒌
′ 𝒒𝒏 cos𝜔𝑘



The Frobenius-Perron Operator for… Continued

The Frobenius-Perron operator can be written as

𝒇𝒌
(𝒏+𝟏)

𝒒, 𝒑

=  𝒅𝝃𝒅𝜼𝜹 𝒒 − 𝝃𝒄𝒌 − 𝜼 − 𝝀𝒌𝑽𝟑−𝒌
′ 𝝃 𝒔𝒌 𝜹 𝒑 + 𝝃𝒔𝒌 − 𝜼 − 𝝀𝒌𝑽𝟑−𝒌

′ 𝝃 𝒄𝒌 𝒇𝒌
(𝒏)

𝝃, 𝜼

𝒄𝒌 = 𝒄𝒐𝒔𝝎𝒌 𝒔𝒌 = 𝒔𝒊𝒏𝝎𝒌

Manipulate the arguments  𝒒𝒄𝒌 − 𝒑𝒔𝒌 − 𝝃 = 𝟎 𝒒𝒔𝒌 + 𝒑𝒄𝒌 − 𝜼 + 𝝀𝒌𝑽𝟑−𝒌
′ (𝝃) = 𝟎

The integral becomes trivial, and the final form of the Frobenius-Perron operator is

𝒇𝒌
(𝒏+𝟏)

𝒒, 𝒑 = 𝒇𝒌
(𝒏)

𝑸,𝑷 + 𝝀𝒌𝑽𝟑−𝒌
′ 𝑸

𝑸
𝑷

= 𝓡𝒌
𝑻 𝒒
𝒑 , 𝓡𝒌 =

𝒄𝒐𝒔𝝎𝒌 𝒔𝒊𝒏𝝎𝒌

−𝒔𝒊𝒏𝝎𝒌 𝒄𝒐𝒔𝝎𝒌
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The Frobenius-Perron Operator for… Continued

Formal small parameter ϵ and the action-angle variables

𝒒 = 𝟐𝑱 cos𝒂 , 𝒑 = − 𝟐𝑱 sin𝒂

𝑱 =
𝟏

𝟐
𝒒𝟐 + 𝒑𝟐 , 𝒂 = −𝐚𝐫𝐜𝐭𝐚𝐧

𝒑

𝒒

The Frobenius-Perron operator becomes

𝒇𝒌
(𝒏+𝟏)

𝒂 + 𝝎𝒌, 𝑱 = 𝒇𝒌
(𝒏)

𝒒, 𝒑 + 𝝐𝝀𝒌𝑽𝟑−𝒌
′ 𝒒

Exactly the same considerations are valid for the counter-circulating beam, for which a similar
Frobenius-Perron operator can be derived.
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Renormalization Group Reduction of the Frobenius-Perron Operator

Exponentiation of the Frobenius-Perron Operator

Since the beam-beam potential 𝑽𝟑−𝒌 does not depend on the momentum variable p, we can write

 𝕷𝟑−𝒌 = 𝝏𝒒𝑽𝟑−𝒌 𝝏𝒑 − 𝝏𝒑𝑽𝟑−𝒌 𝝏𝒒 = 𝝏𝒒𝑽𝟑−𝒌 𝝏𝒑

 𝕷𝟑−𝒌  Liouvillian operator associated with 𝑽𝟑−𝒌. In action-angle variables

 𝕷𝟑−𝒌 = 𝝏𝒂𝑽𝟑−𝒌 𝝏𝑱 − 𝝏𝑱𝑽𝟑−𝒌 𝝏𝒂
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𝒇𝒌
(𝒏+𝟏)

𝒂 +𝝎𝒌, 𝑱 = 𝒇𝒌
(𝒏)

𝒒, 𝒑 + 𝝐𝝀𝒌𝑽𝟑−𝒌
′ 𝒒

↓

𝒇𝒌
(𝒏+𝟏)

𝒂 + 𝝎𝒌, 𝑱 = 𝐞𝐱𝐩 𝝐𝝀𝒌 𝝏𝒒𝑽𝟑−𝒌 𝝏𝒑 𝒇𝒌
(𝒏)

𝒂, 𝑱

𝒇𝒌
(𝒏+𝟏)

𝒂 +𝝎𝒌, 𝑱 = 𝐞𝐱𝐩 𝝐𝝀𝒌 𝕷𝟑−𝒌 𝒇𝒌
(𝒏)

𝒂, 𝑱



Renormalization Group Reduction of the Frobenius-… Continued

Premise for the time being that the beam-beam potential 𝑽𝒌 𝒒 is a known function of q.

The Fourier image of the beam-beam potential  𝑽𝒌 𝝀 , defined as

𝑽𝒌 𝒒 =
𝟏

𝟐𝝅
 

−∞

∞

𝒅𝝀  𝑽𝒌 𝝀 𝒆𝒊𝝀𝒒,  𝑽𝒌 𝝀 =  

−∞

∞

𝒅𝒒𝑽𝒌 𝒒 𝒆−𝒊𝝀𝒒

possesses the following symmetry property   𝑽𝒌
∗ 𝝀 =  𝑽𝒌 −𝝀

The Fourier image can be written as

 𝑽𝒌 𝝀 =
𝟒𝝅

𝝀𝟐
 

−∞

∞

𝒅𝒒𝒅𝒑𝒇𝒌 𝒒, 𝒑 𝒆−𝒊𝝀𝒒 =
𝟒𝝅

𝝀𝟐
 

𝟎

∞

𝒅𝑱 

𝟎

𝟐𝝅

𝒅𝒂𝒇𝒌 𝒂, 𝑱 𝒆−𝒊𝝀 𝟐𝑱 𝒄𝒐𝒔 𝒂

Using the Jacobi-Anger expansion

𝒆𝒊𝒛 𝒄𝒐𝒔 𝝋 =  

𝒎=−∞

∞

𝒊𝒎 𝓙𝒎 𝒛 𝒆𝒊𝒎𝝋, 𝓙𝒎 𝒛 → 𝐁𝐞𝐬𝐬𝐞𝐥 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐟𝐢𝐫𝐬𝐭 𝐤𝐢𝐧𝐝
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Renormalization Group Reduction of the Frobenius-… Continued

Represent the beam-beam potential in a Fourier series in the angle variable as follows 

𝑽𝒌 𝒂, 𝑱 = 𝑽𝒌
(𝟎)

𝑱 + 𝑽𝒌
𝒂 𝒂, 𝑱 = 𝑽𝒌

(𝟎)
𝑱 + 𝟐  

𝒎=𝟏

∞

𝑽𝒌
(𝒎)

𝑱 𝒄𝒐𝒔𝒂

where

𝑽𝒌
(𝟎)

𝑱 =
𝟏

𝟐𝝅
 

−∞

∞

𝒅𝝀  𝑽𝒌 𝝀 𝓙𝟎 𝝀 𝟐𝑱 , 𝑽𝒌
(𝒎)

𝑱 =
𝒊𝒎

𝟐𝝅
 

−∞

∞

𝒅𝝀  𝑽𝒌 𝝀 𝓙𝒎 𝝀 𝟐𝑱

If both rotation frequencies 𝝎𝒌 are far from nonlinear resonances excited by the beam-beam
potentials 𝑉𝑘 the Frobenius-Perron operator can be renormalized. This can be done also when one or
both 𝝎𝒌 are relatively close to certain structural resonance(s) driven by the beam-beam
potentials.

Details  Stephan I. Tzenov, “Stochastic Properties of the Frobenius- Perron Operator,”
arXiv:nlin/0606003, p. 14 pages, 2006.

March 2025 LHEP JINR Dubna



Renormalization Group Reduction of the Frobenius-… Continued

Consider the non-resonant case for the renormalized amplitude of the distribution function in the
continuous limit

 𝕷𝟑−𝒌
(𝟎)

= −𝝎𝟑−𝒌
(𝒖)

𝑱 𝝏𝒂, 𝝎𝟑−𝒌
(𝒖)

𝑱 = 𝝏𝒂𝑽𝟑−𝒌
(𝟎)

𝑱  nonlinear first-order incoherent tune-shift

𝜴𝟑−𝒌 𝝎𝒌, 𝑱 =  

𝒎=𝟏

∞

𝒎𝒄𝒐𝒕
𝒎𝝎𝒌

𝟐
𝝏𝑱 𝑽𝟑−𝒌

(𝒎)
𝝏𝑱𝑽𝟑−𝒌

(𝒎)
⟶ second−order incoherent tune−shift

𝒇𝒌
(𝒏)

𝒂, 𝑱 ∼  𝑭𝒌 𝒂 − 𝒏𝝎𝒌, 𝑱; 𝒏

The diffusion equation exhibits a very important and far-reaching property - there exists an

equilibrium solution for the renormalized distribution function  𝑭𝒌
(𝟎)

𝑱 , which depends only on
the action variables. Moreover, there exist a damping mechanism acting on the fluctuation
harmonics with respect to the angle variables, such that the general solution of the Fokker-
Planck equation rapidly relaxes towards the invariant density distribution.
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𝝏 𝑭𝒌
𝝏𝒏

= −𝝎𝒌𝝏𝒂 𝑭𝒌 + 𝝀𝒌 𝕷𝟑−𝒌
(𝟎)

+ 𝝀𝒌
𝟐 𝟏

𝟐
 𝕷𝟑−𝒌

𝟎 𝟐
+ 𝜴𝟑−𝒌𝝏𝒂  𝑭𝒌



Renormalization Group Reduction of the Frobenius-… Continued

Relaxation rate to the invariant distribution depends on the first-order incoherent tune-shift

𝝎𝟑−𝒌
(𝒖)

𝑱 = −
𝟒

𝟐𝑱
 𝒅𝒒𝒅𝒑𝒇𝟑−𝒌 𝒒, 𝒑  

𝟎

∞
𝒅𝝀

𝝀
𝓙𝟏 𝝀 𝟐𝑱 𝒄𝒐𝒔 𝒒𝝀

Second integral (with respect to λ) is tabular

 

𝟎

∞
𝒅𝒙

𝒙
𝓙𝒏 𝒄𝒙

𝒔𝒊𝒏𝒃𝒙
𝒄𝒐𝒔𝒃𝒙

=
𝟏

𝒏

𝐬𝐢𝐧 𝒏𝐚𝐫𝐜𝐬𝐢𝐧 𝒃/𝒄

𝐜𝐨𝐬 𝒏𝐚𝐫𝐜𝐬𝐢𝐧 𝒃/𝒄
, 𝒇𝒐𝒓 𝟎 < 𝒃 ≤ 𝒄
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𝝎𝟑−𝒌
(𝒖)

𝑱 = −
𝟒

𝟐𝑱
 

−∞

∞

𝒅𝒑  

− 𝟐𝑱

𝟐𝑱

𝒅𝒒𝒇𝟑−𝒌 𝒒, 𝒑 𝐜𝐨𝐬 𝐚𝐫𝐜𝐬𝐢𝐧
𝒒

𝟐𝑱



Renormalization Group Reduction of the Frobenius-… Continued

Taking into account the equilibrium distribution function

𝒇𝟑−𝒌
(𝟎)

𝒒, 𝒑 =
𝟏

𝟐𝝅𝝈𝟑−𝒌
𝟐

𝒆𝒙𝒑 −
𝒑𝟐 + 𝒒𝟐

𝟐𝝈𝟑−𝒌
𝟐

Representation of the modified Bessel function

𝕿𝒏 𝒛 =
𝟏

𝝅
 

𝟎

𝝅

𝒅𝝉𝒆𝒛 𝐜𝐨𝐬 𝝉 𝐜𝐨𝐬 𝒏𝝉

Finally

𝝎𝟑−𝒌
(𝒖)

𝑱 = −
𝟐𝝅

𝝈𝟑−𝒌
𝕿𝟎

𝑱

𝟐𝝈𝟑−𝒌
𝟐

+𝕿𝟏

𝑱

𝟐𝝈𝟑−𝒌
𝟐

𝒆𝒙𝒑 −
𝑱

𝟐𝝈𝟑−𝒌
𝟐

It is sometimes useful in practice to evaluate the averaged incoherent tune shift

𝝎𝟑−𝒌 = 𝟐𝝅  

𝟎

∞

𝒅𝑱 𝒇𝟑−𝒌
(𝟎)

𝑱 𝝎𝟑−𝒌
(𝒖)

𝑱 = −
𝟐𝝅

𝟐𝝈𝟑−𝒌 𝝅

𝟒 + 𝟐 𝟐

𝟑 + 𝟐 𝟐
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Renormalization Group Reduction of the Frobenius-… Continued

Dependence of the first-order incoherent

tune shift −𝝎𝒌
(𝒖)
𝝈𝒌 as a function of the

action variable 𝑱/𝝈𝒌
𝟐.

For typical characteristic parameters

of the magnetic structure for the NICA

collider and the number of particles in

each of the beams 𝑵𝒌 ∼ 𝟒 × 𝟏𝟎𝟗, the

Incoherent tune shift is of the order of

𝝀𝒌 𝝎𝟑−𝒌 ∼ 𝟎. 𝟎𝟏𝟔.
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Linearized Frobenius-Perron Operator and Stability of Coherent Beam-Beam Resonances

Temporal evolution of the dynamic motions of the beam distributions around the equilibrium
distributions 𝐺𝑘 𝐽

𝒇𝒌
(𝒏)

𝒂, 𝑱 = 𝓕𝒌
(𝒏)

𝒂, 𝑱 + 𝑮𝒌 𝑱

Substituting the above ansatz into the Frobenius-Perron operator and retaining only the first order

terms in 𝓕𝒌
(𝒏)

, we obtain the linearized Frobenius-Perron operator

Here

This is a recurrence Fredholm integral equation of second type.
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𝓕𝒌
(𝒏+𝟏)

𝒂 + 𝝎𝒌, 𝑱 = 𝓕𝒌
(𝒏)

𝒂 − 𝝀𝒌𝝎𝟑−𝒌
(𝒖)

, 𝑱 + 𝝀𝒌 𝝏𝒂𝓥𝟑−𝒌
(𝒏)

𝒂 − 𝝀𝒌𝝎𝟑−𝒌
(𝒖)

, 𝑱 𝑮𝒌
′ 𝑱

𝓥𝒌
(𝒏)

𝒂, 𝑱 = 𝟐  

−∞

∞
𝒅𝝀

𝝀𝟐
𝒆𝒊𝝀 𝟐𝑱 𝐜𝐨𝐬 𝒂 𝒅𝒂′𝒅𝑱′𝓕𝒌

(𝒏)
𝒂′, 𝑱′ 𝒆−𝒊𝝀 𝟐𝑱′ 𝐜𝐨𝐬 𝒂′



Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

To solve the linear recurrence equation introduce the Fourier transform

𝓕𝒌
(𝒏)

𝒂, 𝑱 = 𝑮𝒌 𝑱  

𝒍=−∞

∞

𝒈𝒌
(𝒍)

𝑱, 𝒏 𝒆𝒊𝒍𝒂

Assuming the equilibrium distribution function 𝑮𝒌 𝑱 to be of the form

𝑮𝒌 𝑱 =
𝟏

𝟐𝝅𝝈𝒌
𝟐
𝒆𝒙𝒑 −

𝑱

𝝈𝒌
𝟐

for small beam sizes 𝝈𝒌, use the following formal trick

𝑮𝒌 𝑱 𝑮𝟑−𝒌 𝑱′ = 𝕮𝒌𝒆𝒙𝒑 −
𝑱

𝝈𝒌
𝟐
−

𝑱′

𝝈𝟑−𝒌
𝟐

= 𝕮𝒌𝒆𝒙𝒑 −
𝑱′

𝝈𝟑−𝒌
𝟐

+
𝑱′

𝝈𝒌
𝟐
−
𝟐 𝑱𝑱′

𝝈𝒌
𝟐

× 𝒆𝒙𝒑 −
𝑱 − 𝑱′

𝟐

𝝈𝒌
𝟐

∼ 𝝈𝒌 𝝅𝑮𝒌 𝑱 𝑮𝟑−𝒌 𝑱′ 𝜹 𝑱 − 𝑱′

The above expression can be symmetrized with respect to the sizes of both beams
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Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

𝑮𝒌 𝑱 𝑮𝟑−𝒌 𝑱′ =  𝝈 𝝅𝑮𝒌 𝑱 𝑮𝟑−𝒌 𝑱′ 𝜹 𝑱 − 𝑱′ ,  𝝈 =
𝟏

𝟐
𝝈𝟏 + 𝝈𝟐

Equating similar harmonics with respect to the angle variable in the linearized Frobenius-Perron operator,
we obtain

𝑮𝒌 𝑱 𝒈𝒌
(𝒍)

𝒏 + 𝟏 = 𝒆
−𝒊𝒍 𝝎𝒌+𝝀𝒌𝝎𝟑−𝒌

(𝒖)

𝑮𝒌 𝑱 𝒈𝒌
(𝒍)

𝒏 + 𝟐𝑱𝝀𝒌
 𝝈

𝝈𝒌
𝟐

𝟐𝝅𝑮𝟑−𝒌 𝑱  

𝒎=−∞

∞

𝕸𝒍𝒎 𝒈𝟑−𝒌
(𝒎)

𝒏 (∗)

The infinite matrix 𝕸𝒍𝒎 can be expressed as

𝕸𝒍𝒎 =
𝟑𝟐𝒊𝒍

𝒍 + 𝒎 𝟐 − 𝟏 𝒍 −𝒎 𝟐 − 𝟏
, 𝒍 + 𝒎 = 𝐞𝐯𝐞𝐧 → 𝕸𝒍𝒎 = 𝟎, 𝒍 + 𝒎 = 𝐨𝐝𝐝

If 𝒈𝒌
(𝒍)

𝒏 does not depend on the action variable, equation (*) can be simplified by integrating away the

action variable. This approximation however, is valid if and only if the perturbed betatron tunes 𝝎𝟑−𝒌
(𝒖)

do

not depend on the action J, which obviously is not the case. The dependence on the action variable leads
to an effect similar to Landau damping, well-known in plasma physics, which we shall neglect.
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Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

Another justification for the validity of such an approximation is the rapid decrease of the
incoherent tune shift as a functional dependence on the action variable J clearly visible in
Figure. Thus, the first-order incoherent tune shift can be approximately replaced by its average value

Consider now an isolated coherent beam-beam resonance of the form
𝒏𝟏 𝝎𝟏 + 𝒏𝟐 𝝎𝟐 = 𝟐𝝅𝒔 + 𝚫,  𝝎𝒌 = 𝝎𝒌 + 𝝀𝒌 𝝎𝟑−𝒌

To study the stability of the isolated coherent beam-beam resonance, we retain only the ±𝑛1 and
the ±𝑛2 elements in the infinite matrix 𝕸𝒍𝒎
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𝒈𝒌
(𝒍)

𝒏 + 𝟏 = 𝒆−𝒊𝒍 𝝎𝒌+𝝀𝒌 𝝎𝟑−𝒌 𝒈𝒌
(𝒍)

𝒏 +  𝝀𝒌  

𝒎=−∞

∞

𝕸𝒍𝒎𝒈𝟑−𝒌
(𝒎)

𝒏

 𝝀𝒌 =
𝟐

𝝅
𝝀𝒌

 𝝈𝝈𝟑−𝒌
𝟐

𝚺𝟒
, 𝚺𝟐 = 𝝈𝟏

𝟐 + 𝝈𝟐
𝟐



Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

The transformation matrix of the coupled map equations can be expressed as

𝒆𝒙𝒑 −𝒊𝝍𝟏 𝟎

𝟎 𝒆𝒙𝒑 𝒊𝝍𝟏

𝜶𝟏𝒆𝒙𝒑 −𝒊𝝍𝟏 𝜶𝟏𝒆𝒙𝒑 −𝒊𝝍𝟏

−𝜶𝟏𝒆𝒙𝒑 𝒊𝝍𝟏 −𝜶𝟏𝒆𝒙𝒑 𝒊𝝍𝟏

𝜶𝟐𝒆𝒙𝒑 −𝒊𝝍𝟐 𝜶𝟐𝒆𝒙𝒑 −𝒊𝝍𝟐

−𝜶𝟐𝒆𝒙𝒑 𝒊𝝍𝟐 −𝜶𝟐𝒆𝒙𝒑 𝒊𝝍𝟐

𝒆𝒙𝒑 −𝒊𝝍𝟐 𝟎

𝟎 𝒆𝒙𝒑 𝒊𝝍𝟐

𝝍𝒌 = 𝒏𝒌 𝝎𝒌, 𝜶𝟏 =  𝝀𝟏𝕸𝒏𝟏𝒏𝟐 , 𝜶𝟐 =  𝝀𝟐
𝒏𝟐
𝒏𝟏

𝕸𝒏𝟏𝒏𝟐

The eigenvalues of the transition matrix are the roots of the secular equation

𝝁𝟐 − 𝟐𝒄𝟏𝝁 + 𝟏 𝝁𝟐 − 𝟐𝒄𝟐𝝁 + 𝟏 = 𝟎,

𝐫𝐨𝐨𝐭𝐬 ⟹ 𝒄𝟏,𝟐 =
𝟏

𝟐
𝒄𝒐𝒔𝝍𝟏 + 𝒄𝒐𝒔𝝍𝟐 ±

𝟏

𝟐
𝒄𝒐𝒔𝝍𝟏 − 𝒄𝒐𝒔𝝍𝟐

𝟐 − 𝟒𝑨𝒔𝒊𝒏𝝍𝟏 𝒔𝒊𝒏𝝍𝟐 ,

𝐰𝐡𝐞𝐫𝐞 𝑨 =  𝝀𝟏  𝝀𝟐
𝒏𝟐
𝒏𝟏

𝕸𝒏𝟏𝒏𝟐
𝟐
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Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

The motion is stable if the coefficients 𝒄𝟏,𝟐 simultaneously satisfy the conditions

Linear beam-beam coupling resonance  𝝎𝟏 +  𝝎𝟐 = 𝟐𝝅𝒔 + 𝚫 in

the space of the fractional part of the shifted betatron tunes. For

a better clarity of the structure and shape of the islands of

instability, an increased value of the beam-beam parameter

𝝀𝒌 corresponding to 𝑵𝒌 ∼ 𝟒 × 𝟏𝟎𝟏𝟎 number of particles in each

beam has been taken.
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−𝟏 ≤ 𝒄𝟏,𝟐 ≤ 𝟏



Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

Note that only nonlinear beam-beam resonances of even order are possible. Furthermore, the elements of
the infinite matrix 𝕸𝒍𝒎 decrease quite rapidly with the

resonance order, which leads to a drastic reduction of the

resonant driving term.

The figure shows the stability diagram in the case of

fourth-order coherent nonlinear beam-beam resonance

 𝝎𝟏 + 𝟑 𝝎𝟐 = 𝟐𝝅𝒔 + 𝚫. The instability region consists

of narrow resonance stopbands together with islands of

instability scattered around them. There is sufficiently

wide band of stability, which greatly facilitates the

felicitous selection of the operating betatron tunes.

In this sense, nonlinear coherent beam-beam resonances

are significantly less dangerous than the linear coupling

resonance.
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Linearized Frobenius-Perron Operator and Stability of Coherent… Continued

The Figure presents the realistic situation showing

the stability diagram of the linear coherent beam-beam

resonance at a value of the beam-beam parameter

𝝀𝒌 ∼ 𝟒. 𝟕𝟕𝟏𝟐 × 𝟏𝟎−𝟔 corresponding to 𝑵𝒌 ∼ 𝟒 × 𝟏𝟎𝟗

number of particles in each beam. A central narrow

resonance stopband and scattered satellite narrow

stopbands and small islands of instability are clearly

visible.
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What has been achieved and what more can be done

• An innovative, unconventional approach to the problem of beam-beam interaction.

• Detailed analysis of the establishment of an equilibrium density distribution in phase space and
the relaxation towards the latter has been studied analytically.

• The behavior of the perturbed from equilibrium distribution function with respect to the
coherent stability of the colliding beams, is carried out in linear approximation.

• The Renormalization Group (RG) method has been applied to study the stochastic properties
of the Frobenius-Perron operator for symplectic twist maps of the most general type and in
particular for the beam-beam twist map.

• It has been shown that up to second order in the beam-beam perturbation kick, the renormalized
map propagator (equivalently, the renormalized Frobenius-Perron operator) with nonlinear
stabilization describes a random walk of the angle variable.

• The incoherent beam-beam tune shift as a function of the action variable has been calculated
explicitly.
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What has been achieved and what more can be done

• The linearized Frobenius-Perron operator for each of the two beams actually implies a
discrete form of the linearized Vlasov equations.

• This essentially is equivalent to and signifies a new method for calculating coherent beam-beam
instabilities using a matrix mapping technique. In the special case of an isolated coherent
beam-beam resonance, a stability criterion for coherent beam-beam resonances has been
found in closed form.

March 2025 LHEP JINR Dubna



What has been achieved and what more can be done

What next: 

• The Frobenius-Perron operator approach can be generalized without much difficulty to systems
with more than one degree of freedom, so as to cover both transverse directions and, if
necessary, the longitudinal degree of freedom as well.

• Combined with an adequate Poisson solver, the Frobenius-Perron operator, especially in its
Cartesian coordinate and momentum representation, can represent a tool of particular value
for the numerical simulation of the beam-beam interaction.

• Its numerical implementation may provide a wonderful opportunity not only to track the orbits of
individual particles, but also to follow and describe the dynamic evolution of an entire
statistical distribution of an ensemble of particles.
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