Straw-Barrel status report

Temur Enik on behalf of Straw Tracker Team 20/03/2025

Straw Tracker Team

«механика»

- конструирование
- прототипирование
- моделирование
- производство компонентов
- сборка
- тестирование
- газообеспечение
- aging
- термостабилизация
- инфраструктура
- •

«электроника»

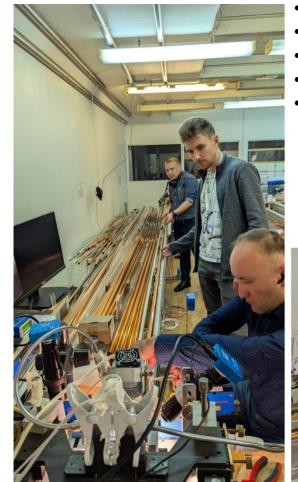
- технические требования
- подбор чипов
- прототипирование
- моделирование
- симуляция
- slow control электроника
- HV
- LV
- интеграция DAQ
- test beam
- cosmic test

- «софт»
- SPDroot
- Garfield
- Geant4
- data taking
- data quality monitoring
- data analyses
- alignment
- slow control
- оптимизация геометрии
- •

New Straw production line and the assembling lab at JINR

- Area ~200 sq.m., clean room~100 sq.m, machine shop and assembling hall~50 sq.m and 8,5 m high
- Double Production line length~12m
- The deadline is the beginning of the 1st quarter of 2025
- Commissioning works the beginning of the 2th quarter of 2025
- Planned production ~60km straw
- We started to assemble a new production line

New Straw production line and assembling place at INP

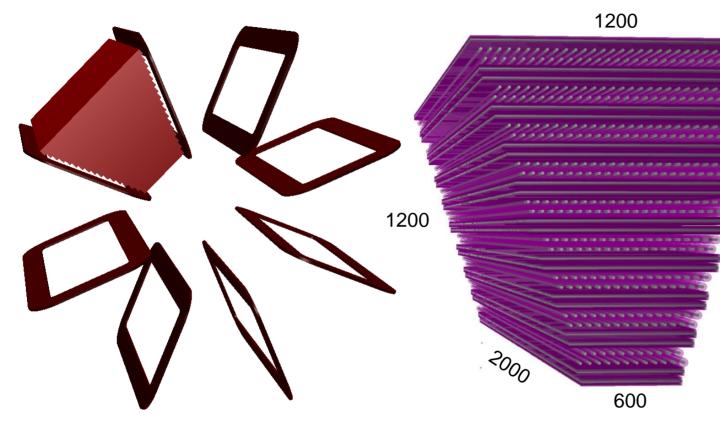

«Big» room

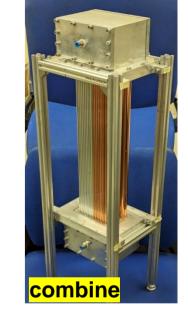
- Area ~250 sq.m., clean room~100 sq.m and 6,7 m high
- Double Production line length~12m
- Room renovation started in 2024
- Necessary materials and equipment have been purchased

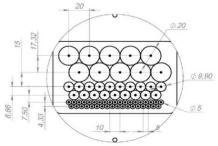
«Small» room

- Area ~60 sq.m., clean room~30 sq.m,
- Room renovation has been finished in March 2024
- Clean room is being built
- 5m straw welding machine will be installed
- The machine and related equipment is purchased

INP Personel traning at JINR Straw Production Site

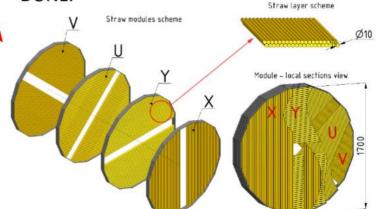


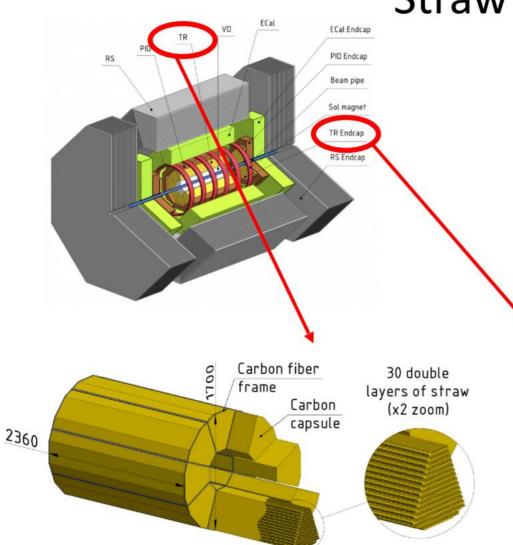

- added a new microscope with better resolution for visualization
- improved the seam positioning system
- production line speed ~3 km/month
- active work is underway in the field of R&D with colleagues from the INP
- One sextant requires about ~6 km of straws



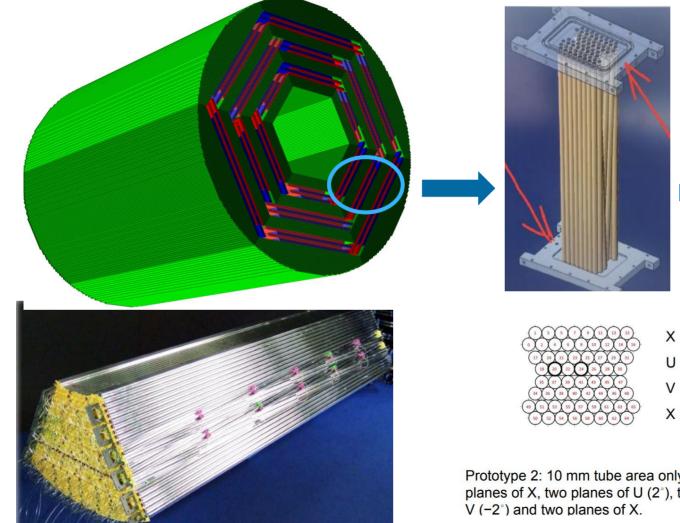
BARREL STRAW TRACKER

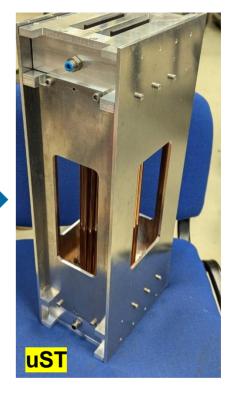
Prototype 1: 5 mm, 10 mm, and 20 mm tubes area


•8 XY(optional UV) wedge-shaped straws stations inside the toroidal magnet
•Straw tube with 10mm diameter, in the center a 30mkm gold-plated tungsten wire
•Precision measurement ~150 mkm


•The number of layers and the number of straws are discussed.

Straw tracker

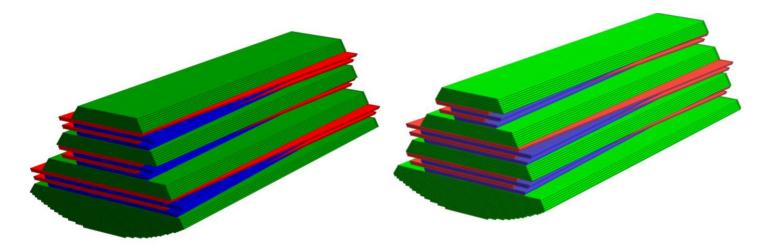



- Main tracker system of SPD
- Straw diameter 10mm thickness 36mkm PET
- Spatial resolution of 150mkm
- Barrel is made of 8 modules with up to 30 double-layers, with the ZUV orientation
- Endcaps are made of 12 double-layers with the XYUV orientation
- Vast experience in straw production in JINR for several experiment: COMPASS, NA-62, NA-64, SVD-2; prototypes for: CREAM, SHiP, COMET, DUNE.



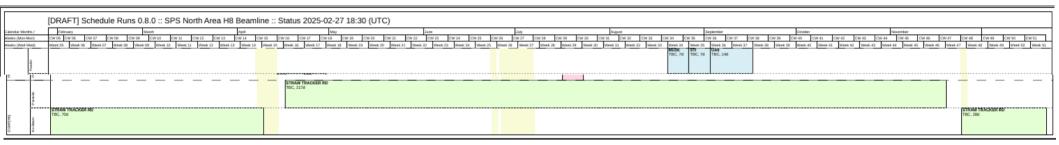
«косой» прототип

Prototype 2: 10 mm tube area only. Two planes of X, two planes of U (2°), two planes o



Simulation studies – geometry optimization

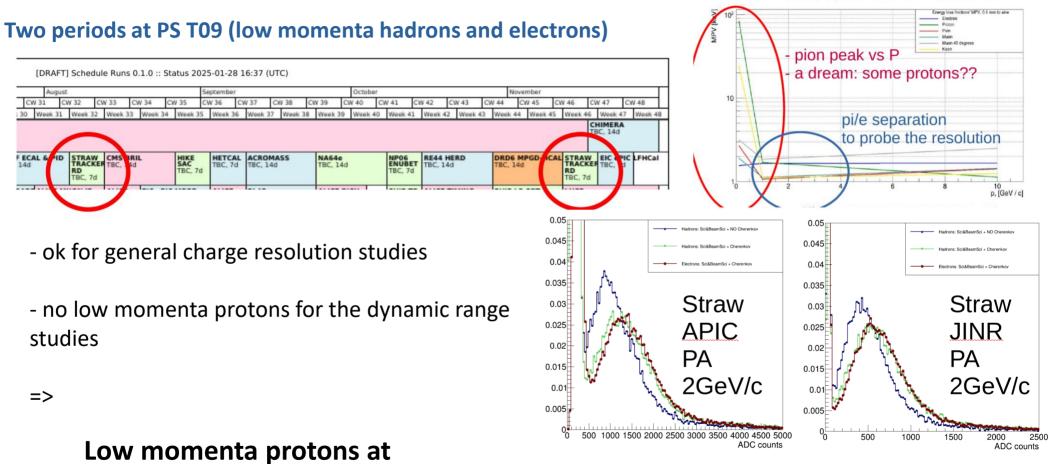
see slides by R. Akhunzyanov at SPD Physics and MC (Feb25)


- basic optimization (SPDroot)

performance-based optimization requires PR to be implemented in SPDroot – expected soon!
 (see talk by <u>V. Andreev at SPD Physics and MC yesterday</u>)

SPS beam time 2025

Permanent setup at SPS H8 beam dump (high momentum muons, low intensity)

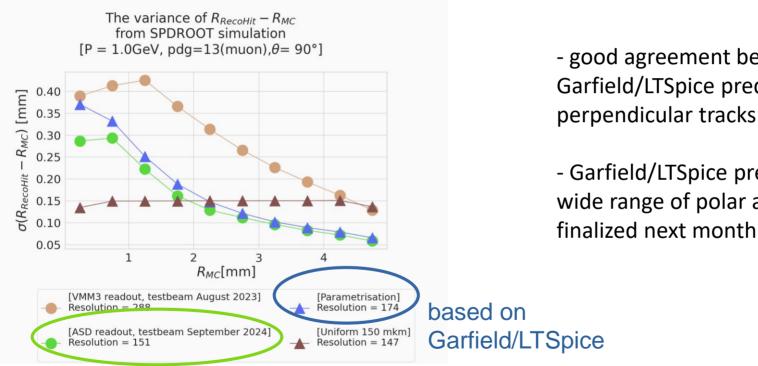

Two (three?) periods at SPS H4 (high momentum muons, high intensity)

		[DRAFT] Schedule Runs 1.0.0 :: Status 2025-03-10 09:46 (UTC)																																	
Calendar Monti	hs /	April May						June					July				August					Septembe	er			October									
Weeks (Mon-Mon)		CW 15	CW 16	CW 17	CW 1	B CW 1	9 CW 2	20 C	W 21	CW 22	CW 23	CW 24	CW 25	CW 26	CW 27	CW 28	CW 29	CW 30	CW 31 (W 32	CW 33 C	W 34	CW 35	CW 36	CW 37	CW 38	CW 39 0	W 40 CW	41 C	W 42 0	CW 43 CV	/ 44 CW	45 C	W 46 CW	V 47
Weeks (Wed-W	(ed)	Week 15	5 Week	16 Wee	k 17 W	eek 18 W	/eek 19 V	Neek 20	Week 21	Week	22 Week	k 23 Wee	k 24 Week	25 Week	26 Week	27 Week	28 Week	29 Week 3	Week 31	Week 32			4 Week 35		36 Week 3	7 Week 38	Week 39	Week 40 V	Neek 41	Week 42	Week 43	Week 44	Week 45	Week 46	Week 47
No. M		1	STRAW TRACKE														STRA RD TBC, 1	W TRACKE	R	DRD6 (TBC, 14			IO EP FTS TBC, 7d			LHCf TBC, 7d	TBC, 7d	SND TBC, 14d			Veek		т	RD1 BC, 14d	
PPE134			TBC, 9d														TBC,	CACTUS													veek overla vith P			?)
PPE144					5 4e , 84d																														
PPE154	101010		GIF++ TBC, 9d													O lons	GIF+ TBC, 3	+ 14d															G	IF++ BC, 14d	
PPE164	6																													CMS EC TBC, 14d	d				
																																	1	1	

PS beam time 2025

PNPI synchrocyclotron (June 2025)

MPV as function of particle momentum. 0.1 mm distance to wire

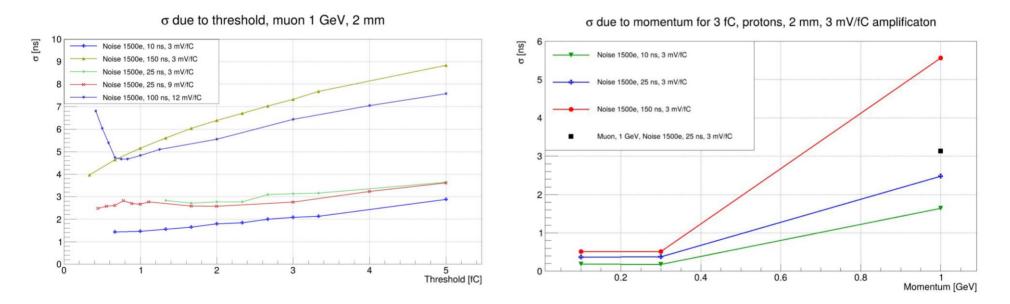

12

Measurements of the straw performance and choice of the readout electronics parameters

Simulation studies – parametrization in SPDroot

Test beam 2024 – see E. Mosalova at Phisics&MC Feb25

- good agreement between TB-2024 and Garfield/LTSpice prediction for

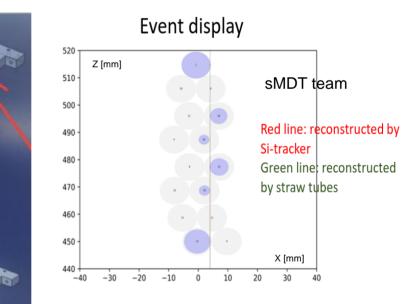

- Garfield/LTSpice prediction is used for a wide range of polar angles – to be

based on TB 2024 data

Simulation studies – electronics parameters with Garfield/LTSpice

see slides by S. Bulanova, V. Bautin at Tracker Simulation meeting

- time resolution vs threshold for different peaking- time resolution vs particle momentum for time and gains (VMM-like model) low momenta protons

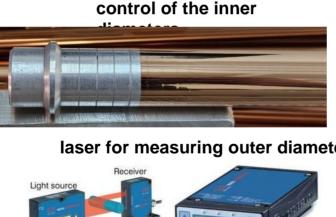

Studies on charge measurements (dynamic range, charge resolution) - ongoing

Test Beam data analysis

Test beam 2024 – see D.Sosnov's talk at SPD Collaboration meeting

Further data treatment ongoing (together with Uni Michigan):

- efficiency vs R, x-talk (ASD read-out)
- tracking with stereo-angle


Input for SPDroot:

Straw Production: Quality and Acceptance Tests

- Continuous microscopic inspection of the welded seam (to be automatized using AI/ML);
- Continuous measurement of outer straw diameter during production at 1.3 bar absolute
- Measuring the inside diameter of a straw (both ends of the straw) using a gauge;
- Short-term high pressure test at 3 bar relative for ~10-20 sec;
- Long-term high pressure test at 1 bar relative for 100 days to reduce creep rate.

laser for measuring outer diameter

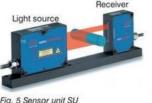
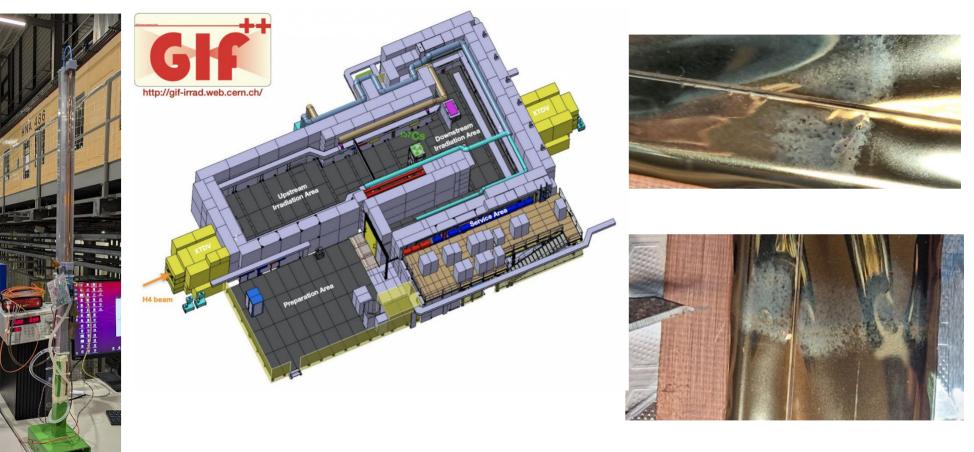


Fig. 6 Controller CU


A measurement system consists of:

long term storage

Temur Enik on behalf of STRAW TRACKER TEAM

Gas System: design requirement

Gas systems (as detectors) are subject to severe requirements on material & gas for safe detector operation:

- Mainly (or exclusively) stainless steel pipe and components
- Need to validate most of the gas system components
- Documentation for QA and operation/maintenance follow up
- Monitoring of gas system operation
- Monitor of supply gases and mixture composition
- Evaluation of operational cost
- Flexible design to accommodate detector requirements/upgrades
- Careful evaluation of
 - resources for operation
 - resources for maintenance activity
 - Stability required
 - Balance requirements vs safety (as much as possible)

Straw-full system volume = 5 m3 Average gas consumption (70% Ar + 30% CO2) = 5000 liters/hour.- Operating 4 months a year, ~500 hours, total 2500 m3 per year-Temur Enik on behalf of STRAW

Plans

- straw tracker prototyping
- new assembling and production lab spaces
 - recovery of the miniSPD setup
 - readout electronics prototyping
 - test beam measurements at SPS and PS, the corresponding data analysis and feedback to FEE developers
- - evaluating possibilities for the testbeam measurements at PNPI (Gatchina), INP (Almaty) and JINR
- concept development of the gas supply system
 - longevity study for straw and supporting element material
- LV and HV power supply development
- purchasing the necessary materials (tape, wire ..)